Инверсная населенность энергетических уровней. Инверсная населенность трехуровневых систем

При хаотическом тепловом движении распределение энергии среди атомов неравномерно. Некоторая часть атомов возбуждена, что соответствует их нахождению на более высоких, чем основной, уровнях энергии. В условиях теплового равновесия и при отсутствии внешнего электромагнитного поля большая часть атомов обладает минимумом энергии. Образно говоря, населенность верхних уровней меньше населенности нижних.

Под влиянием энергетических воздействий - повышения температуры, освещения, бомбардировки быстрыми частицами - доля возбужденных атомов возрастает, т. е. населенность верхних уровней увеличивается. Этот процесс иллюстрируется рисунком 102, а, б.

Казалось бы, по мере повышения температуры можно получить такое распределение частиц по уровням, при котором населенность верхних уровней больше, чем нижних. Но это не так. Ведь возбужденное состояние неустойчиво. По мере увеличения заселенности верхних уровней увеличивается вероятность спонтанных переходов, которые сопровождаются излучением.

В 1939 г. советский физик В. А. Фабрикант высказал предположение о возможности создания такого распределения частиц по энергиям, при котором число возбужденных атомов больше числа атомов, находящихся в основном состоянии (рис. 102, в). Такое состояние называют состоянием с инверсной населенностью уровней (от латинского inversio - переворачивать).

Выясним, какие особые свойства присущи состоянию с инверсной населенностью уровней.

При распространении света в веществе обычно происходит поглощение света. Это происходит потому, что в состоянии термодинамического равновесия число невозбужденных атомов в веществе много больше, чем число возбужденных, и, следовательно, фотоны чаще взаимодействуют с невозбужденными атомами, т. е. поглощаются веществом.

В веществе же с инверсной населенностью уровней число возбужденных атомов больше числа невозбужденных. При этом уменьшается вероятность встречи фотонов с невозбужденным атомом, т. е. уменьшается вероятность поглощения фотонов. Вещество становится более прозрачным или даже способным усиливать свет. Действительно, если в нем движется фотон, энергия которого в точности равна разности энергий атомов в состояниях (рис. 102, в), то, взаимодействуя с возбужденным атомом, такой фотон вызовет индуцированное излучение. В результате появится второй такой же фотон. Взаимодействуя с другими двумя возбужденными атомами, эти два фотона вызовут высвечивание еще двух атомов. В конечном счете вместо одного фотона из вещества выйдет много фотонов, что является усилением света. Усилению света способствует то обстоятельство, что фотоны с частотой

слабо поглощаются веществом. Среду называют активной, если в ней число индуцированных фотонов превышает число поглощенных.

Эти особенности сред с инверсной населенностью уровней были установлены в 1951 г. В. А. Фабрикантом, М. М. Вудынским и Ф. А. Бутаевой.

В 1964 г. Государственный комитет по делам изобретений и открытий выдал этим ученым диплом на открытие, в котором, в частности, говорится: «Установлено неизвестное ранее явление усиления электромагнитных волн при прохождении через среду, в которой концентрация частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям, избыточна по сравнению с концентрацией в равновесном состоянии».


Для того, чтобы поучить усиление падающего света, необходимо каким-либо образом обратить населенность уровней. Т.е. сделать так, чтобы большему значению энергии соответствовало и большее число атомов . При этом говорят, что совокупность атомов имеет инверсную (обратную) населенность уровней.

Отношение числа атомов на уровнях и равно:

В случае инверсной населенности . Отсюда следует, что показатель экспоненты должен быть больше нуля ‑ . Но . Следовательно, чтобы показатель экспоненты был больше нуля, необходимо чтобы температура была отрицательной ‑ .

Поэтому состояние с инверсной населенностью уровней называют иногда состоянием с отрицательной температурой. Но это выражение носит условный характер, потому что само понятие температуры применимо к равновесным состояниям, а состояние с инверсной населенностью является неравновесным состоянием.

В случае инверсной населенности, свет, проходя через вещество, будет усиливаться. Формально это соответствует тому, что в законе Бугера коэффициент поглощения будет отрицательным. Т.е. совокупность атомов с инверсной населенностью уровней можно рассматривать как среду, с отрицательным коэффициентом поглощения.


Итак, для усиления света веществом нам необходимо создать инверсную населенность уровней этого вещества. Посмотрим, как это делается на примере рубинового лазера.

Рубин представляет собой окись алюминия , в которой некоторые атомы алюминия заменены атомами хрома . Этот рубин облучают широким спектром частот электромагнитных волн. При этом ионы хрома переходят в возбужденное состояние (см. рис. 4). Ионы алюминия в этом деле заметной роли не играют.

Состояние с энергией представляет собой целую полосу, вследствие взаимодействия ионов с кристаллической решеткой. С уровня для ионов хрома возможны два пути.

1. Возвращение в исходное состояние с энергией с испусканием фотона.

2. Переход в метастабильное состояние с энергией путем теплового взаимодействия с ионами кристаллической решетки алюминия.

Время жизни на уровне как и обычно, равно времени жизни в возбужденном состоянии ‑ . Спонтанный переход на уровень обозначен стрелкой , а переход на метастабильный уровень обозначен стрелкой .

Расчеты и эксперимент показывают, что вероятность перехода много больше вероятности перехода . Кроме того, переход из метастабильного состояния с энергией в основное состояние запрещен правилами отбора (правила отбора не абсолютно строги, они указывают лишь большую или меньшую вероятность перехода).



Поэтому время жизни на метастабильном уровне составляет , что в сто тысяч раз превышает время жизни на уровне .

Таким образом, при достаточно большом числе атомов хрома может возникнуть инверсная населенность уровня ‑ число атомов на уровне превысит число атомов на уровне , т.е. может получиться то, что мы желаем.

Спонтанный переход с уровня на основной уровень обозначен стрелкой , Возникающий при этом переходе фотон может вызвать вынужденное излучение следующего фотона, который обозначен стрелкой . Этот еще одного и т.д. Т.е. образуется каскад фотонов.

Рассмотрим теперь техническое устройство рубинового лазера.

Он представляет собой стержень, диаметром порядка и длиной . Торцы стержня строго параллельны друг другу и тщательно отшлифованы. Один торец представляет собой идеальное зеркало, второй ‑ полупрозрачное зеркало, пропускающее около падающей энергии.

Вокруг рубинового стержня устанавливают несколько витков лампы накачки ‑ ксеноновой лампы, работающей в импульсном режиме.

Итак, в теле стержня образовались вынужденные фотоны. Те фотоны, направление распространения которых составляет малые углы с осью стержня, будут многократно проходить стержень и вызывать вынужденное излучение метастабильных атомов хрома. Вторичные фотоны будут иметь то же направление, что и первичные, т.е. вдоль оси стержня. Фотоны другого направления не разовьют значительный каскад и выйдут из игры. При достаточной интенсивности пучка часть его выходит наружу.

Рубиновые лазеры работают в импульсном режиме с частотой повторения несколько импульсов в минуту. Кроме того, внутри них происходит выделение большого количества тепла, поэтому их приходится интенсивно охлаждать.

Рассмотрим теперь работу газового лазера, в частности гелий-неонового.

Он состоит из кварцевой трубки, внутри которой находится смесь газов гелия и неона. Гелий находится под давлением , а неон под давлением , при этом атомов гелия приблизительно в 10 раз больше, чем атомов неона. Основными излучающими атомами здесь являются атомы неона, а атомы гелия играют вспомогательную роль для создания инверсной населенности атомов неона.

Подкачка энергии в этом лазере осуществляется за счет энергии тлеющего разряда. При этом атомы гелия возбуждаются и переходят в возбужденное состояние ( см. рис. 5) . Это состояние для атомов гелия является метастабильным, т.е. обратный оптический переход запрещен правилами отбора. Поэтому атомы гелия могут перейти в невозбужденное состояние, передавая энергию атомам неона при столкновениях. Вследствие этого атомы неона приходят в возбужденное состояние , которое близко состоянию для гелия. Атомы неона возбуждаются как за сет энергии тлеющего разряда, так и за счет столкновений с атомами гелия.

Кроме того разгружают уровень , подбирая такие размеры трубки, чтобы атомы неона, находясь на уровне , при соударениях со стенками передавали бы им энергию, переходя на основной уровень.

Вследствие этих процессов происходит инверсная населенность уровня для неона. С уровня возможен переход на уровень .

Основным конструктивным элементом этого лазера является кварцевая газоразрядная трубка, диаметром около . В ней расположены электроды для создания электрического разряда. По торцам трубки расположены плоско-параллельные зеркала, одно из которых, переднее, полупрозрачное. Условия для усиления возникают только у тех фотонов, которые вылетают параллельно оси лазера.

Рабочей частотой лазера является переход . Правилами отбора разрешено около тридцати переходов. Для выделения одной частоты зеркала делают многослойными, настроенными на отражение только одной определенной волны. Широко распространены лазеры, излучающие волны с длиной . Но наиболее интенсивным является переход с длиной волны , т.е. в инфракрасной области спектра.

Газовые лазеры работают в непрерывном режиме и не нуждаются в интенсивном охлаждении.

Отличительными особенностями лазерного излучения являются.

1. Временная и пространственная когерентность.

2. Строгая монохроматичность .

3. Большая мощность

4. Узость лазерного пучка.

Лекция 15. (2 часа)

На первый взгляд инверсию населенности можно создать в среде с двумя энергетическими уровнями Е 1 и Е 2 >Е 1. Например, это можно попытаться сделать путём облучения среды фотонами с частотой . Т.к. в нормальных условиях N 2 Е 2 , чем Е 2 => Е 1 .

Однако, когда населенности окажутся равными N 2 =N 1, процессы вынужденного излучения и поглощения будут компенсировать друг друга и инверсию создать будет невозможно.

Поэтому для лазеров применяют среды, в которых частицы могут занимать не два, а три или четыре уровня

С случае трехуровневой системы (рис.) уровень Е 2 должен быть метастабильными, т.е. время жизни частицы на этом уровне намного превышает время жизни на других уровнях возбуждённого состояния. Это означает, что W 21 <N 1 , которая используется для генерации лазерного излучения за счёт перехода Е 2 => Е 1 . Причём переход Е 3 => Е 2 происходит без излучения с передачей энергии кристаллической решетке в виде тепла. Пример такой среды – рубин с примесью ионов хрома.

В случае четырехуровневой системы метастабильным является уровень Е 2 , при этом W 21 <N 1 , которая используется для генерации лазерного излучения - за счёт перехода с Е 2 на Е 1 . Затем происходит быстрый переход с Е 1 на Е 0 без излучения. В четырехуровневой системе создать инверсию населенностей проще, т.к. уровень Е 1 первоначально заселен очень мало и уже при незначительном переводе частиц на уровень Е 2 создается инверсия населенностей. Пример – стекло с неодимом, а также газовая активная среда, применяемая в газовых СО 2 - лазерах. Создание инверсии населенностей в активной среде называется процессом накачки (или просто накачкой ).

Накачка осуществляется, как правило, одним из двух способов: оптическим или электрическим. При оптической накачке излучение мощного источника света поглощается активной средой и таким образом переводит атомы активной среды на верхний уровень. Этот способ особенно хорошо подходит для твердотельных или жидкостных лазеров. Механизмы уширения линий в твердых телах и жидкостях приводят к очень значительному уширению спектральных линий, так что обычно имеют дело не с накачкой уровней, а с накачкой полос поглощения. Эти полосы поглощают заметную долю света, излучаемого лампой накачки. Электрическая накачка осуществляется посредством достаточно интенсивного электрического разряда, и ее особенно хорошо применять для газовых и полупроводниковых лазеров. В частности, в газовых лазерах из-за того, что уних спектральная ширина линий поглощения невелика, а лампы накачки дают широкополосное излучение, осуществлять оптическую накачку довольно трудно. Оптическую накачку весьма эффективно было бы использовать для полупроводниковых лазеров. дело в том, что у полупроводников имеет полоса сильного поглощения. Однако применение в данном случае электрической накачки оказывается более удобным, поскольку через полупроводник очень легко проходит электрический ток.

Еще один способ накачки – химическая. Есть два достойный внимания вида химической накачки: 1) ассоциативная реакция, ведущая к образованию молекулы АВ в возбужденном колебательном состоянии, и 2) диссоциативная реакция, , ведущая к образованию частицы В (атома или молекулы) в возбужденном состоянии.

Другим способом накачки газовой молекулы является сверхзвуковое расширение газовой смеси, содержащей данную молекулу (гадодинамическая накачка). Следует упомянуть также о специальном виде оптической накачки, когда лазерный луч используется для накачки другого лазера (лазерная накачка). Свойства направленного лазерного луча делают его очень удобным для накачки другого лазера, причем здесь не требуется специальных осветлителей, как в случае (некогерентой) оптической накачки. Благодаря монохроматичности излучения лазера накачки ее применение не ограничивается твердотельными и жидкостными лазерами, но ее можно также использовать для накачки газовых лазеров. В данном случае линия, излучаемая накачивающим лазером, должна совпадать с линией поглощения накачиваемого лазера. Это применяется, например, для накачки большинства лазеров дальнего ИК-диапазона.

В случае оптической накачки свет от мощной некогерентной лампы с помощью соответствующей оптической системы предается активной среде. На рис. 1 представлены три наиболее употребительные схемы накачки. Во всех трех случаях среда имеет форму цилиндрического стержня. Изображенная на рис. 1а лампа имеет форму спирали; при этом свет попадает в активную среду либо непосредственно, либо после отражения от зеркальной цилиндрической поверхности (на рис. Цифра 1). Такая конфигурация использовалась при создании первого рубинового лазера и до сих пор иногда применяется для импульсных лазеров. на рис. 1б лампа имеет форму цилиндра (линейная лампа), радиус и длина которого приблизительно те же, что и у активного стержня. Лампа размещается вдоль одной из фокальных осей F1 зеркально отражающего эллиптического цилиндра (1), а лазерный стержень располагается вдоль другой фокальной оси F2. Большая часть света, излучаемого лампой, благодаря отражению от эллиптического цилиндра попадает в лазерный стержень. На рис. 1в изображен пример так называемой конфигурации с плотной упаковкой. Лазерный стержень и линейная лампа располагаются как можно ближе друг к другу и плотно окружаются цилиндрическим отражателем (1). Эффективность конфигурации с плотной упаковкой обычно ненамного ниже, чем в случае эллиптического цилиндра. Часто вместо зеркально отражающих рефлекторов в схемах на рис 1а и в применяются цилиндры, изготовленные из диффузно отражающих материалов. Применяются и сложные типы осветителей, в конструкции которых использованы более чем один эллиптический цилиндр или несколько ламп в конфигурации с плотной упаковкой.


Определим КПД накачки непрерывного лазера как отношение минимальной мощности накачки Pm, необходимой для создания определенной скорости накачки, к электрической мощности накачки Р, фактически подведенной к лампе. Минимальная мощность накачки может быть записана в виде: , где V – объем активной среды, vp – разность частот между основным и верхним лазерными уровнями. Распространение скорости накачки по активному стержню является во многих случаях неоднородным. Поэтому более правильно определять среднюю минимальную мощность накачки , где усреднение производится по объему активной среды. Таким образом

Для импульсного лазера по аналогии средний КПД накачки имеем

где интеграл по времени берется в пределах от начала до конца импульса накачки, а Е – электрическая энергия, подведенная к лампе.

Процесс накачки можно рассматривать состоящим из 4 различных этапов: 1) испускания излучения от лампы, 2) переноса этого излучения к активному стержню, 3) поглощения его в стержне и 4) передачи поглощенной энергии верхнему лазерному уровню.

Из выражения (1) или (!а) можно найти скорость накачки Wp:

Электрическая накачка применяется в газовых и п/п лазерах. Электрическая накачка газового лазера осуществляется пропусканием через газовую смесь постоянного, высокочастотного (ВЧ) или импульсного тока. Вообще говоря, ток через газ может протекать либо вдоль оси лазера (продольный разряд, рис. 2а), либо поперек ее (поперечный разряд, рис. 2б). В лазерах я продольным разрядом электроды нередко имеют кольцеобразную форму, причем, чтобы ослабить деградацию материала катода вследствие столкновения с ионами, площадь поверхности катода делается намного больше, чем у анода. В лазерах же с поперечным разрядом электроды вытягиваются на всю длину лазерной среды. В зависимости от типа лазера применяют самые различные конструкции электродов. Схемы с продольным разрядом используются обычно для непрерывных лазеров, в то время как поперечный разряд применяется как для накачки постоянным, так и импульсным и ВЧ током. Поскольку поперечные размеры лазера обычно существенно меньше продольных, в одной и той же газовой смеси напряжение, которое необходимо приложить в случае поперечной конфигурации, значительно ниже, чем напряжение для продольной конфигурации. Однако продольный разряд, когда он происходит в диэлектрической (пр., стеклянной) трубке (рис. 2а) позволяет получить более однородное и стабильное распределение накачки.

В электрическом разряде образуются ионы и свободные электроны, а поскольку они приобретают дополнительную энергию от приложенного электрического поля, они могут возбуждать при столкновении нейтральные атомы. Положительные ионы благодаря своей большой массе ускоряются значительно хуже, чем электроны, и поэтому не играют существенной роли в процессе возбуждения.

5.20. Оптические резонаторы. Гауссовские пучки света .

В открытых структурах типа интерферометра Фабри-Перо существуют характерные колебательные моды. К настоящему времени известно большое число модификаций открытых резонаторов, отличающихся друг от друга конфигурацией и взаимным расположением зеркал. Наибольшей простотой и удобством отличается резонатор, образованный двумя сферическими отражателями с равной кривизной, обращенными вогнутыми поверхностями навстречу друг другу и расположенные на расстоянии радиуса кривизны, равного радиусу сфер, друг от друга. Фокусное расстояние сферического зеркала равно половине радиуса кривизны. Поэтому фокусы отражателей совпадают, вследствие чего резонатор называется конфокальным (рис. 1). Интерес в конфокальному резонатору обусловлен удобством его юстировки не требующей сорогой параллельности отражателей друг другу. Необходимо лишь, чтобы ось конфокального резонатора пересекала каждый отражатель достаточно далеко от его края. В противном случае дифракционные потери могут быть слишком большими.

Рассмотрим конфокальный резонатор более подробно.

Пусть все размеры резонатора велики по сравнению с длиной волны. Тогда моды резонатора, распределение полей в нем и дифракционные потери можно получить на основе принципа Гюйгенса-Френеля путем решения соответствующего интегрального уравнения. Если отражатели конфокального резонатора имеют квадратное сечение со стороной 2а, которая мала по сравнению с расстоянием между зеркалами l, равным их радиусу кривизны R, а числа Френеля велики, то собственные функции интегрального уравнения типа Фокса и Ли аппроксимируются произведениями полиномов Эрмита Hn(x) на гауссову функцию .

В декартовой системе координат, начало которой помещено в центр резонатора, а ось z совпадает с осью резонатора (рис. 1), поперечное распределение поля дается выражением

где определяет размер той области поперечного сечения, при выходе на которой интенсивность поля в резонаторе, пропорциональная S2, падает в е раз. Другими словами – это ширина распределения интенсивности.

Полиномы Эрмита нескольких первых степеней имеют вид:

Собственными функциями уравнения, дающим поперечное распределение (1), соответствуют собственные частоты, определяемые условием

На рис. 2 графически представлены три первые функции Эрмита-Гаусса для одной из поперечных координат, построенные по формуле (1) с учетом (2). Эти графики наглядно показывают характер изменения поперечного распределения поля с увеличением поперечного индекса n.

Резонансы в конфокальном резонаторе имеют место только для целых значений . Спектр мод к.р. вырожден, увеличение m+n на две единицы и уменьшение q на единицу дает то же значение частоты. Основной является мода ТЕМ00q, поперечное распределение поля определяется простой гауссовой функцией . Ширина распределения интенсивности меняется вдоль оси z по закону

где , а имеет смысл радиуса пучка в фокальной плоскости резонатора. Величина определяется длиной резонатора и составляет

На поверхности зеркала площадь пятна основной моды, как видно из (4) и (5), вдвое больше, чем площадь сечения шейки каустики.

Решение (1) получено для поля внутри резонатора. Но когда одно из зеркал частично прозрачно, как это бывает в случае активных лазерных резонаторов, то выходящая наружу волна является бегущей волной с поперечным распределением (1).

По существу, выделение основной моды активного конфокального резонатора – это способ получения гауссова пучка монохроматического света. Рассмотрим их более подробно.) ширина , чему соответствует угловая расходимость

В результате основная часть энергии гауссова пуска сосредоточена в телесном угле

Таким образом, расходимость лазерного излучения в основной моде определяется не поперечным, а продольным размером резонатора лазера.

По существу, формула (8) описывает дифрагированную волну, являющуюся результатом самодифракции гауссова пуска. Дифракционная картина, описываемая (8), характеризуется монотонным уменьшением интенсивности при отходе от осевого направления, т.е. полным отсутствием каких-либо осцилляций в яркости дифракционной картины, а также быстрым спаданием интенсивности волны на крыльях распределения. Такой характер имеет дифракция гауссова пучка на любой апертуре, лишь бы размер ее в достаточной мере превышал ширину распределения интенсивности пучка.

Для создания активной Среды необходимо избирательное возбуждение атомов, обеспечивающее преимущественное заселение одного или нескольких уровней энергии. Одним из наиболее простых и эффективных методов является метод оптической накачки, который был использован в первом Л. на рубине. Рубин представляет собой кристалл окиси алюминия Al2O3 с примесью (~ 0,05%) ионов Cr3+, замещающих атомы Al. Уровни энергии иона Cr3+ в рубине. Поглощение света, соответствующего синей и зелёной областям спектра, переводит ионы Cr3+ с основного уровня E1 на возбуждённые уровни, образующие две широкие полосы 1 и 2. Затем за сравнительно малое время (~ 10-8 сек) осуществляется безызлучательный переход этих ионов на уровни E2 и. Избыток энергии при этом передаётся колебаниям кристаллической решётки. Время жизни ионов Cr3+ на уровнях E 2 и составляет 10-3 сек. Только по истечении этого времени ионы снова возвращаются на основной уровень E1. Переходам E2® E1 и ® E1 соответствует излучение в красной области спектра. Если освещать кристалл рубина светом источника, обладающего достаточно большой интенсивностью в синей и зелёной областях спектра (полосы накачки), то происходит накопление ионов Cr3+ на уровнях E2 и и возникает инверсия населённостей этих уровней по отношению к основному уровню E1. Это позволило создать Л., работающий на переходах E2® E1 и ® E1, генерирующий свет с длиной волны l " 0,7 мкм.

Для создания инверсии населённостей уровней E2, относительно E1 необходимо перевести больше половины ионов Cr3+ на уровни E2, за время, не превышающее 10-3 сек. Это предъявляет большие требования к мощности источника накачки. В качестве таких источников используются импульсные ксеноновые лампы. Длительность импульса накачки обычно ~ 10-3 сек. За это время в каждом см3 кристалла поглощается энергия в несколько дж.

Большое распространение получил метод создания активной среды непосредственно в электрическом разряде в различных газах. Возможности получения с помощью этого метода импульсов генерации большой энергии ограничиваются в основном малой плотностью рабочей среды; инверсию населённостей легче получить в сравнительно разреженных газах. Однако этот метод позволяет использовать в качестве активной среды Л. самые различные атомные и молекулярные газы и их смеси, а также различные типы электрических разрядов в газах. В результате оказалось возможным создать Л., работающие в инфракрасной, видимой и ультрафиолетовой областях спектра. Кроме того, возбуждение в электрическом разряде позволяет реализовать непрерывный режим работы Л. с большим кпд преобразования электрической энергии в энергию излучения Л. (см. Газовый лазер).

В наиболее мощном газоразрядном Л. непрерывного действия на смеси молекулярных газов CO2 и N2 (с добавлением ряда др. компонентов) механизм образования инверсии населённостей состоит в следующем: электроны газоразрядной плазмы, ускоряемые электрическим полем, при столкновениях возбуждают колебания молекул N2. Затем в результате столкновений возбуждённых молекул N2 с молекулами CO2 происходит заселение одного из колебательных уровней CO2, что и обеспечивает возникновение инверсии населённостей. Все стадии этого процесса оказываются очень эффективными, и кпд достигает 20-30%.

В дальнейшем оказалось возможным создать газодинамический лазер на смеси CO2 и N2, в котором газовая смесь нагревается до температуры Т ~ 2000 К, формируется сверхзвуковой поток, который, выходя из сопла, расширяется и тем самым быстро охлаждается. В результате быстрого охлаждения возникает инверсия населённостей рабочих уровней CO2 (см. Газодинамический лазер). Кпд преобразования тепловой энергии в излучение газодинамического Л. невелик (~ 1%). Тем не менее газодинамические Л. весьма перспективны, т. к., во-первых, в этом случае облегчается задача создания крупногабаритных Л. большой мощности и, во-вторых, при использовании тепловых источников энергии вопрос о кпд Л. стоит менее остро, чем в случае электроразрядных Л. При сжигании 1 г топлива (например, керосина) выделяется энергия порядка десятка тыс. дж, в то время как электрическая энергия, запасаемая в конденсаторах, питающих лампы вспышки, - порядка 0,1 дж на 1 см 3 объёма конденсатора.

Т. к. химические связи молекул являются исключительно энергоёмким накопителем энергии, то перспективно непосредственное использование энергии химических связей для возбуждения частиц, т.е. создание активной среды Л. в результате химических реакций. Примером химической накачки является реакция водорода или дейтерия с фтором. Если в смеси H2 и F2 к.-л. образом диссоциировать небольшое кол-во молекул F2, то возникает цепная реакция F + H2 ® HF + H, H + F2 ® HF + F и т.д. Молекулы HF, образующиеся в результате этой реакции, находятся в возбуждённом состоянии, причём для ряда квантовых переходов выполняются условия инверсии населённостей. Если к исходной смеси добавить CO2, то, кроме Л. на переходах HF (l ~ 3 мкм), удаётся также создать Л. на переходах СО2 (l = 10,6 мкм). Здесь колебательно возбуждённые молекулы HF играют ту же роль, что и молекулы N2 в газоразрядных лазерах на CO2. Более эффективной в этом случае оказывается смесь D2, F2 и CO2. В этой смеси коэффициент преобразования химической энергии в энергию когерентного излучения может достигать 15%. Химические Л. могут работать как в импульсном, так и в непрерывном режимах; разработаны различные варианты химических Л., в том числе сходные с газодинамическими Л.

В полупроводниках активную среду оказалось возможным создавать различными способами: 1) инжекцией носителей тока через электронно-дырочный переход; 2) возбуждением электронным ударом; 3) оптическим возбуждением.

Поделиться