Длина волны излучения красного цвета. Диапазоны волн в порядке убывания

В далеком 1873 году известный британский физик Д.К. Максвелл создает общую теорию, описывающую процессы, происходящие в Волны же были представлены в виде вихревых возмущений. Впоследствии большинство его теоретических выкладок блестяще подтвердились. В настоящее время расширились, так как сами поля стали рассматриваться с точки зрения процессов квантовой физики. Тогда же было высказано предположение о том, что даже видимый свет представляет собой не что иное, как одну из разновидностей электромагнитной волны. В 2009 году это было окончательно доказано физиками (измерена магнитная составляющая светового потока). Его основное отличие от других разновидностей в длине волны.

Все мы привыкли к свету, воспринимая его как должное и редко задавая себе вопросы: какова длина волны света, что это такое и пр. Даже в Библии сказано, что Бог создал свет в первый день творения. Косвенно это свидетельствует о важности этого для всего живого. Видимый свет представляет собой излучение электромагнитной природы, которое может быть непосредственно регистрировано глазом. Однако орган зрения фиксирует не весь спектр волны, а только определенный промежуток: нижняя граница примерно составляет 380 нм, а верхняя 780 нм. Почему «примерно»? Потому что у каждого человека чувствительность зрения различна и данные пределы ориентировочны. Полный спектр настолько обширен, что видимая человеком света составляет всего 0,04%.

Если мысленно представить двумерные координаты, то по горизонтальной оси будет откладываться длина волны света в нанометрах, а вертикальная ось укажет чувствительность глаз. Соответственно, начало волны приходится на 780, а конец - на 380. Пик же достигается при значении 555 нм. В промежутке 10 нм - 380 нм находится а инфракрасное 780 нм - 1 мм. Общий промежуток, составляющий сумму ультрафиолетового, видимого и инфракрасного излучений является оптическим спектром, хотя это не означает, что невооруженным глазом все их можно увидеть. Длина волны света - это важнейшая для человека характеристика, так как именно благодаря ей мы можем различать цвета. Наиболее просто уловить цветовые оттенки на пике волны (555 нм), а вот по краям, в областях синего и красного цветов, сложнее. Поэтому именно при определении производных оттенков у людей иногда возникают разногласия, так как чувствительность рецепторов глаз различна. Интересно, что 555 нм - это спектр зеленого цвета, который наиболее хорошо различим. Совпадение ли, что трава и листья зеленые? Кстати, можно увидеть часть инфракрасного излучения, если направить камеру мобильного телефона (или цифрового фотоаппарата) на светодиод работающего пульта дистанционного управления от бытовой техники (ТВ, тюнер и пр.).

Длина волны красного света соответствует 700 нм, то есть почти с самого края видимой области. Отсюда следует, что 10 условных единиц излучения в этом диапазоне глазом будут уловлены как одна единица в зеленом (555 нм). А вот длина волны желтого света, составляющая от 560 нм до 590 нм, расположена ближе к пику волны, поэтому ошибки в определении оттенков глазом человека встречаются реже.

Кроме различных цветов, в жизни часто приходится сталкиваться с белым. На самом деле в спектре нет белого. Он получается путем смешивания трех базовых цветов. Считается, что если совместить все семь цветов радуги одинаковой интенсивности, то получится чистый белый цвет. В то же время обычно хотя бы один из них преобладает, что добавляет определенный оттенок. Можно поступить проще и смешать всего три цвета - красный, синий и зеленый. Существование телевизионных экранов на основе лучевых трубок с тремя электродами способных отображать точку белого цвета, служит непосредственным доказательством этого.

Соответствует какое-либо монохроматическое излучение . Такие оттенки, как розовый , бежевый или пурпурный образуются только в результате смешения нескольких монохроматических излучений с различными длинами волн.

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемого земной атмосферой . Чистый воздух рассеивает синий свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящее в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300-400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете .

Энциклопедичный YouTube

    1 / 5

    ✪ Инфракрасный свет: за гранью видимого

    ✪ Видимое излучение

    ✪ Двойное лучепреломление (видимый свет)

    ✪ О видимом и невидимом

    ✪ Люминесценция и фосфоресценция

    Субтитры

    Человечество всегда тянулось к ночному небу Мы рисовали картинки из звезд, следили за планетами, Видели знаки и предсказания в небесных объектах. Но во Вселенной всё ещё остаётся так много неизведанного. Огромные расстояния отделяют нас от объектов, которые помогли бы нам найти ответы на самые важные вопросы: Как сформировались галактики? Как появились звезды и планеты? Есть ли на других планетах условия, пригодные для жизни? Чтобы разрабатывать и проверять наши теории, нам нужно знать что происходит в космосе. Поэтому мы создаём устройства, помогающие нам видеть больше. Они становятся всё массивней. Всё мощнее. Всё совершеннее. Со временем, астрономы перестали полагаться только на свет, видимый невооруженным глазом. Когда вы смотрите на окружающий мир, вы видите так называемый "видимый свет". Но видимый свет - это лишь одна из форм излучения. Во Вселенной существует множество разных видов излучения. Оно повсюду. Наше тело научилось воспринимать видимый свет с помощью глаз. Но оно также научилось ощущать другой вид излучения, называемый инфракрасным светом. Наше тело ощущает его как тепло. Это инфракрасное излучение было открыто астрономом Фредериком Уильямом Гершелем. Гершель знал, что призму можно использовать, для того чтобы разделить белый свет на разные цвета. Он хотел узнать, имеют ли различные цвета различную температуру. И оказалось, что имеют! Но затем Гершель измерил температуру пустого пространства, находящегося рядом с красным цветом. Никакого света не было видно, но температура поднялась. Так Гершель открыл невидимое инфракрасное излучение. Сейчас человечеству известно, что существуют невидимые глазу виды излучения. Они могут быть где угодно. Повсюду вокруг нас. Насколько их много? Зачем они существуют? Что они скрывают? Конечно же, мы должны были это выяснить. Энергия, путешествующая по Вселенной в форме волн, называется электромагнитным излучением. Весь диапазон изучений: от гамма-лучей с высокой энергией до радиоволн с низкой энергией, называется электромагнитным спектром. Наши глаза различают только видимый свет, но мы можем создавать устройства, такие как инфракрасные камеры, чтобы увидеть и другие виды излучения. Эти рукотворные "глаза" видят невидимый свет за нас и превращают его в понятную нашему глазу картинку. Предметы могут испускать разные виды излучения. Наблюдая за полным спектром предмета, мы можем увидеть настоящую картину предмета. Когда мы направляем такие устройства в небо, они открывают перед нами космос во всей красе. Когда мы смотрим на ночное небо, мы видим звезды и планеты, галактики и туманности только в видимом свете. Но, если бы могли различать инфракрасный свет, то небо выглядило бы совершенно по-другому. Во-первых, длинные волны инфракрасного света могут проходить сквозь облака газа и пыли. Более короткие волны видимого света блокируются или рассеиваются, при прохождении через такие скопления частиц. Получается, наблюдая инфракрасный свет, мы можем увидеть излучающие тепло объекты даже сквозь облака газа и пыли. Как, например, эта недавно сформировавшаяся звезды. Объекты, которые не излучают видимый свет сами по себе, как, например, планеты, могут быть достаточно горячими, чтобы излучать инфракрасный свет, позволяющий нам заметить их. А наблюдая как инфракрасный свет звезды проходит через атмосферу, мы можем изучить химический состав планеты. Пылевой хвост, оставленный далекими планетами в процессе их формирования также излучает инфракрасный свет, помогая нам понять, как рождаются новые планеты. Итак, инфракрасный свет помогает нам рассмотреть объекты, находящиеся неподалёку. Но кроме этого, он может рассказать нам о том, как появились самые первые объекты во Вселенной сразу после Большого Взрыва. Представьте, что вы отправляете на Землю письмо из галактики, расположенной в миллиардах световых лет от нас. Оно будет идти невероятно долго! И когда оно, наконец, придёт, тот, кто его прочитает, узнает новости давностью в миллиарды лет. Свет самых первых звезд, образовавшихся в молодой Вселенной, ведет себя точно так же. Он покидает звезды много лет назад и путешествует по космосу, преодолевая гигантские расстояния между галактиками. Если бы мы могли видеть его, мы бы видели галактики такими, какими они были в ранней Вселенной. Получается, мы могли бы видеть прошлое! Но, к сожалению, мы не можем его видеть. Почему? Потому что Вселенная расширяется. Когда свет путешествует по космосу, он растягивается этим расширением. Первые звезды светили в основном в видимом и ультрафиолетовом спектрах, но растягивание изменило длину волны света, превратив его в инфракрасный. Этот эффект называется "красным смещением". Единственная возможность увидеть достигающий нас свет далеких звезд, это поиск очень тусклого инфракрасного света. Собирая его, мы можем воссоздавать изображения самых первых галактик появившихся во Вселенной. Наблюдая за рождением первых звезд и галактик, мы углубляем свои знания о том, как образовалась наша Вселенная. Как Вселенная прошла путь от первых сверкающих звезд, до скоплений миллиардов звезд, которые мы видим сейчас. Что мы узнаем о том как росли и развивались галактики? Как хаос ранней Вселенной приобрёл порядок и структуру? В настоящее время NASA строит новый космический телескоп "Джеймс Уэбб". С помощью огромного зеркала, способного собирать инфракрасный свет, и орбиты, расположенной далеко позади Луны Уэбб позволит нам увидеть космос таким, каким мы его ещё не видели. Уэбб будет искать признаки наличия воды на планетах, вращающихся у других звезд. Будет делать фотографии младенчества нашей Вселенной. Увидит звезды и планетарные системы, скрытые в коконах пыли. Сможет найти ответы на самые важные вопросы Вселенной, и, возможно, даже на те которые мы ещё не успели задать. Ответы, которые скрываются от нас в виде инфракрасного света. Все что нам нужно делать - смотреть. [ Инфракрасный свет: за гранью видимого ] [ Принципы работы телескопа Джеймс Уэбб ] Перевод и субтитры: astronomyday.ru

История

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах .

Ньютон первый использовал слово спектр (лат. spectrum - видение, появление) в печати в 1671 году , описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный , оранжевый , жёлтый , зелёный , голубой , индиго и фиолетовый . Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450-480 625-667 2,58-2,75
Сине-зелёный 480-510 588-625 2,43-2,58
Зелёный 510-550 545-588 2,25-2,43
Желто-зелёный 550-570 526-545 2,17-2,25
Жёлтый 570-590 508-526 2,10-2,17
Оранжевый 590-630 476-508 1,97-2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения .

Спектр электромагнитных волн.

Электромагнитные волны классифицируются по длине волны или связанной с ней частотой волны . Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в данном томе, а во втором - квантовыми законами, изучаемыми в томе 5 настоящего пособия.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

1) Радиоволны;

2) Инфракрасное излучение;

3) Световое излучение;

4) Рентгеновское излучение;

5) Гамма излучение.

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

Рассмотрим спектр электромагнитных волн более подробно.

Радиоволны.

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм(частота меньше 3 10 12 гц = 3000 Ггц).

Радиоволны делятся на:

1. Сверхдлинные волны с длиной волны больше 10км(частота меньше 3 10 4 гц=30кгц);

2. Длинные волны в интервале длин от10км до 1км(частота в диапазоне 3 10 4 гц - 3 10 5 гц=300кгц);

3. Средние волны в интервале длин от1км до 100м(частота в диапазоне 3 10 5 гц -310 6 гц=3мгц);

4. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);

5. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).

Ультракороткие волны в свою очередь делятся на:

а) метровые волны;

б) сантиметровые волны;

в) миллиметровые волны;

г) субмиллиметровые или микрометровые.

Волны с длиной волны меньше, чем 1м(частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).

Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла. Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.

Инфракрасное и световое излучения.

Инфракрасное, световое, включая ультрафиолетовое, излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов.

Оптический спектр занимает диапазон длин электромагнитных волн в интервале от 210 -6 м= 2мкм до 10 -8 м=10нм (по частоте от1.510 14 гц до 310 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Ширина оптического диапазона по частоте составляет примерно 18 октав 1 , из которых на оптический диапазон приходится примерно одна октава(); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Рентгеновское и гамма излучение.

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.

Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии 2 , соответствующего данной частоте излучения.

Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.

Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света.

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.

Гармонические электромагнитные волны светового диапазона называются монохроматическими. Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:

где - вектор Пойнтинга.

Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:

где - коэффициент преломления среды; - волновое сопротивление вакуума.

Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим. Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.

Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.

В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .

Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.

Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.

Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона - Якоби:

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.

В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений дуализма света, приведшего, как известно, к формулировке основных принципов квантовой механики.

1) Октавой по определению называется диапазон частот между произвольной частотой w и её второй гармоникой, равной 2w.

2) h=6.6310 -34 Джсек - постоянная Планка.

Хотя в вакууме электромагнитные волны всех частот распространяются одинаково - со скоростью света, их взаимодействие с веществом очень сильно зависит от частоты (а равным образом от длины волны и энергии кванта). По характеру взаимодействия с веществом излучение делят на диапазоны: гамма-излучение, рентген, ультрафиолет, видимый свет, инфракрасное излучение и радиоволны, которые вместе образуют электромагнитный спектр. Сами эти диапазоны в свою очередь разделяют на поддиапазоны, причем в науке нет единой устоявшейся традиции такого деления. Тут многое зависит от применяемых технических средств для генерации и регистрации излучения. Поэтому в каждой сфере науки и техники поддиапазоны определяют по-своему, а нередко даже сдвигают границы основных диапазонов.

Видимое излучение

Из всего спектра человеческий глаз способен улавливать излучение только в очень узком диапазоне видимого света. От одного его края до другого частота излучения (а равно длина волны и энергия квантов) меняется менее чем в два раза. Для сравнения самые длинные радиоволны в 10 14 раз длиннее видимого излучения, а самые энергичные гамма-кванты - в 10 20 энергичнее. Тем не менее, на протяжении многих тысяч лет большую часть информации об окружающем мире люди черпали из диапазона видимого излучения, границы которого определяются свойствами светочувствительных клеток человеческой сетчатки.

Разные длины волн видимого света воспринимаются человеком как разные цвета - от красного до фиолетового. Традиционное деление видимого диапазона спектра на семь цветов радуги является культурной условностью. Никаких четких физических границ между цветами нет. Англичане, например, обычно делят радугу на шесть цветов. Известны и другие варианты. За восприятие всего разнообразия цветов и оттенков видимого света отвечают всего три различных типа рецепторов, которые чувствительны к красному, зеленому и синему цвету. Это позволяет воспроизводить практически любой цвет, смешивая на экране эти три основных цвета.

Для приема видимого света от далеких космических источников используют вогнутые зеркала, которые собирают излучение с большой площади практически в одну точку. Чем крупнее зеркала, тем мощнее телескоп. Зеркала должны изготавливаться с чрезвычайно высокой точностью - отклонения формы поверхности от идеальной не должны превышать десятой доли длины волны - 40 нанометров, то есть 0,04 микрона. И такая точность должна сохраняться при любых поворотах зеркала. Это определяет высокую стоимость больших телескопов. Диаметр зеркал самых крупных оптических инструментов - телескопов Кека на Гавайях - 10 метров.

Хотя атмосфера прозрачна для видимого света (отмечено голубыми стрелками на плакате), она всё же создает серьезные помехи для наблюдений. Даже если забыть про облака, атмосфера немного искривляет лучи света, что снижает четкость изображения. Кроме того, сам воздух рассеивает падающий свет. Днем это голубое свечение, вызванное рассеянным светом Солнца, не позволяет вести астрономические наблюдения, а ночью - рассеянный свет звезд (и в последние десятилетия искусственная засветка неба наружным освещением городов, автомобилями и т. п.) ограничивает видимость самых бледных объектов. Справиться с этими трудностями позволяет вынос телескопов в космос. Телескоп «Хаббл» по земным меркам имеет очень скромные размеры - диаметр 2,24 метра, однако благодаря заатмосферному размещению он позволил сделать множество первоклассных астрономических открытий.

Ультрафиолетовое излучение

С коротковолновой стороны от видимого света располагается ультрафиолетовый диапазон, который делят на ближний и вакуумный. Как и видимый свет, ближний ультрафиолет проходит через атмосферу. Органами чувств человек его не воспринимает, но на коже ближний ультрафиолет вызывает появление загара. Это защитная реакция кожи на определенные химические нарушения под действием ультрафиолета. Чем короче длина волны, тем большие нарушения может вызывать ультрафиолетовое излучение в биологических молекулах. Если бы весь ультрафиолет проходил через атмосферу, жизнь на поверхности Земли была бы невозможна. Однако выше некоторой частоты атмосфера перестает пропускать ультрафиолетовое излучение, поскольку энергии его квантов становится достаточно для разрушения (диссоциации) молекул воздуха. Одним из первых ультрафиолетовый удар принимает на себя озон, за ним следует кислород. Вместе атмосферные газы предохраняют поверхность Земли от жесткого ультрафиолетового излучения Солнца, которое называют вакуумным, поскольку оно может распространяться только в пустоте (вакууме). Верхний предел вакуумного ультрафиолета - 200 нм . С этой длины волны начинает поглощать ультрафиолет молекулярный кислород (O 2).

Телескопы для ближнего ультрафиолетового излучения строятся по тем же принципам, что и для видимого диапазона. В них тоже используются зеркала, покрытые тонким отражающим металлическим слоем, но изготавливать их надо с еще большей точностью. Ближний ультрафиолет можно наблюдать с Земли, вакуумный - только из космоса.

Рентгеновское излучение

Формальной границы между жестким ультрафиолетовым и рентгеновским излучением нет. К ее определению есть два основных подхода: с одной стороны, к рентгену принято относить излучение, способное вызывать возбуждение атомных ядер - подобно тому, как видимое и инфракрасное излучение возбуждает электронные оболочки атомов и молекул. В этом случае даже жесткий вакуумный ультрафиолет в некоторых случаях может быть отнесен к рентгену. В другом подходе рентгеном считают излучение с длиной волны меньше характерного размера атомов (0,1 нм ). Тогда получается, что большую часть мягкого рентгеновского диапазона следует считать сверхжестким ультрафиолетом.

Мягкое рентгеновское излучение еще может отражаться от полированного металла, но только при скользящем падении - под углом менее 1 градуса. Более жесткое излучение приходится концентрировать иными способами. Для задания направления используют узкие трубки, отсекающие кванты, приходящие сбоку, а приемником служит сцинтиллятор, в котором рентгеновские кванты ионизируют атомы, а те, вновь объединяясь с электронами, испускают видимое или ультрафиолетовое излучение, которое регистрируют при помощи фотоэлектронных умножителей. По сути, в телескопах жесткого рентгеновского диапазона ведется подсчет отдельных квантов излучения и уже потом при помощи компьютера формируется изображение.

От рентгена к гамма

Граница, на которой рентгеновский диапазон сменяется гамма-излучением, также условна. Обычно ее связывают с энергией квантов, которые испускаются при ядерных реакциях (или наоборот, могут их вызывать). Другой подход связан с тем, что тепловое излучение не принято относить к гамма-диапазону, как бы ни была высока его энергия. Во Вселенной наблюдаются относительно стабильные макроскопические объекты, разогретые до десятков миллионов градусов - это центральные участки аккреционных дисков вокруг нейтронных звезд и черных дыр. А вот объекты с температурой в миллиарды градусов - например, ядра массивных красных гигантов - практически всегда укрыты непрозрачной оболочкой. Впрочем, нередко даже излучение в их недрах называют не мягким гамма-излучением, а сверхжестким рентгеном. Устойчивых образований с температурой выше десятков миллиардов градусов в современной Вселенной неизвестно. Это дает основание считать, что гамма-излучение всегда генерируется нетепловым путем. Основным механизмом является излучение при столкновении заряженных частиц, разогнанных до околосветовых скоростей мощными электромагнитными полями, например, у нейтронных звезд.

Гамма-излучение

Деление гамма-излучения на поддиапазоны носит еще более условный характер. К сверхвысоким энергиям относят гамма-кванты, генерация которых выходит за пределы возможностей современных технологий. Все источники такого излучения связаны исключительно с космосом. Но поскольку технологиям свойственно развиваться, это определение нельзя назвать четким.

Атмосфера защищает нас и от гамма-излучения. В мягком и жестком поддиапазонах она полностью его поглощает. Кванты диапазона сверхвысоких энергий, сталкиваясь с ядрами атомов в атмосфере, порождают каскады частиц, энергия которых постепенно снижается и рассеивается. Однако первые эшелоны частиц в них движутся быстрее скорости света в воздухе . В таких условиях заряженные частицы порождают так называемое тормозное (черенковское) излучение, в чем-то подобное звуковой ударной волне от сверхзвукового самолета. Ультрафиолетовые и видимые кванты тормозного излучения достигают поверхности Земли, где улавливаются специальными телескопами. Можно сказать, что сама атмосфера становится частью телескопа, и это позволяет наблюдать с Земли гамма-излучение сверхвысоких энергий. Это отмечено на плакате красными стрелками.

Еще более энергичные кванты - ультравысоких энергий - порождают настолько мощные каскады частиц, что они пробивают атмосферу насквозь и достигают поверхности Земли. Их называют широкими атмосферными ливнями (ШАЛ) и регистрируют сцинтилляционными датчиками. Частицы ШАЛ наряду с естественной радиоактивностью земных пород могут повреждать биологические молекулы, в частности ДНК, и вызывать мутации в живых организмах. Тем самым они вносят свой вклад в эволюцию жизни на Земле. Но если бы их интенсивность была заметно выше, это могло бы стать серьезным препятствием для жизни. К счастью, чем выше энергия гамма-квантов, тем реже они встречаются. Самые энергичные кванты с энергией около 10 20 эВ приходят примерно раз в сто лет на квадратный километр земной поверхности. Происхождение столь энергичных гамма-квантов пока не вполне ясно. Значительно большей энергией кванты обладать не могут, так как выше некоторого порога они начинают взаимодействовать с реликтовым микроволновым излучением, приводя к рождению заряженных частиц. Иначе говоря, Вселенная непрозрачна для излучения заметно более энергичного, чем 10 21 –10 24 эВ .

Инфракрасное излучение

Отправляясь от видимого света в длинноволновую сторону спектра, мы попадаем в диапазон инфракрасного излучения. Ближнее ИК-излучение физически ничем не отличается от видимого света, за исключением того, что не воспринимается сетчаткой глаза. Его можно регистрировать теми же приборами, в частности, телескопами, что и видимый свет. Человек также ощущает инфракрасное излучение кожей - как тепло. Именно благодаря инфракрасному излучению нам тепло сидеть у костра. Большую часть энергии горения уносит вверх восходящий поток воздуха, на котором мы кипятим воду в котелке, а инфракрасное (и видимое) излучение испускается в стороны молекулами газов, продуктов сгорания и раскаленными частицами угля.

С ростом длины волны атмосфера теряет прозрачность для инфракрасного излучения. Это связано с так называемыми колебательно-вращательными полосами поглощения молекул атмосферных газов. Будучи квантовыми объектами, молекулы не могут вращаться или колебаться произвольным образом, как грузы на пружинке. У каждой молекулы есть свой набор энергий (и, соответственно, частот излучения), которые они могут запасать в форме колебательных и вращательных движений. Однако даже у не самых сложных молекул воздуха набор этих частот столь обширен, что фактически атмосфера поглощает всё излучение в некоторых участках инфракрасного спектра - это так называемые инфракрасные полосы поглощения. Они перемежаются небольшими участками, в которых космическое ИК-излучение достигает поверхности Земли - это так называемые окна прозрачности, которых насчитывается около десятка. Их существование представлено на плакате разрозненными голубыми стрелками в инфракрасном диапазоне. Интересно отметить, что поглощение ИК-излучения почти полностью происходит в нижних слоях атмосферы из-за повышения плотности воздуха у поверхности Земли. Это позволяет вести наблюдения почти во всем инфракрасном диапазоне с аэростатов и высотных самолетов, которые поднимаются в стратосферу.

Деление инфракрасного излучения на поддиапазоны также весьма условно. Граница между ближним и средним инфракрасным излучением проводится примерно в районе абсолютной температуры 300 К, которая характерна для предметов на земной поверхности. Поэтому все они, включая приборы, являются мощными источниками инфракрасного излучения. Чтобы в таких условиях выделить излучение космического источника, аппаратуру приходится охлаждать до температур, близких к абсолютному нулю, и выносить за пределы атмосферы, которая сама интенсивно светит в среднем ИК-диапазоне - именно за счет этого излучения Земля рассеивает в космос энергию, постоянно поступающую от Солнца. Основной тип приемника излучения в этом диапазоне - болометр, то есть, попросту говоря, маленькое черное тело, поглощающее излучение, соединенное со сверхточным термометром.

Дальний инфракрасный диапазон - один из наиболее сложных, как для генерации, так и для регистрации излучения. В последнее время благодаря разработке особых материалов и сверхбыстродействующей электроники с ним научились достаточно эффективно работать. В технике его часто называют терагерцевым излучением. Сейчас активно идет разработка бесконтактных сканеров для определения химического состава объектов на основе генераторов терагерцевого излучения. Они смогут выявлять пластиковую взрывчатку и наркотики на контрольных пунктах в аэропортах.

В астрономии этот диапазон чаще называют субмиллиметровым излучением. Он интересен тем, что в нем (а также в соседнем с ним микроволновом диапазоне) наблюдается реликтовое излучение Вселенной. До уровня моря субмиллиметровое излучение не доходит, но поглощается оно в основном в самых нижних слоях атмосферы. Поэтому в горах Чили и Мексики на высоте около 5 тысяч метров над уровнем моря сейчас строятся крупные субмиллиметровые телескопы - в Мексике 50-метровый, а в Чили массив из 64 телескопов диаметром 12 метров.

Микроволны и радиоволны

К инфракрасному диапазону примыкает радиоизлучение, которое охватывает весь длинноволновый край электромагнитного спектра. Энергия квантов в радиодиапазоне очень мала. Ее обычно не хватает для существенных изменений в структуре атомов и молекул, но хватает, чтобы взаимодействовать с вращательными уровнями молекул, например, воды. Энергии радиоволн также достаточно для того, чтобы воздействовать на свободные электроны, например, в проводниках. Колебания электромагнитного поля радиоволны вызывают синхронные колебания электронов в антенне, то есть переменный электрический ток.

При высокой интенсивности микроволнового излучения этот ток может вызывать значительный нагрев вещества. Это свойство используется для разогрева продуктов, содержащих воду, в микроволновых печах. Микроволновое излучение также называют сверхвысокочастотным (СВЧ) излучением. Оно является самым коротковолновым поддиапазоном радиоизлучения с длиной волны от 1 мм до 30 см . СВЧ-излучение проникает в толщу продуктов на глубину до нескольких сантиметров, что обеспечивает прогрев по всему объему, а не только с поверхности, как в случае обработки инфракрасным излучением на гриле. В микроволновом диапазоне также работают все системы сотовых телефонов и локальной радиосвязи, например, протоколы Bluetooth и WiFi, используемые беспроводными электронными устройствами.

Чем больше длина радиоволны, тем меньшую энергию она несет и тем труднее ее зарегистрировать. Для приема антенну, в которой под действием радиоволны возникают электрические колебания, подключают к электрическому контуру. При попадании в резонанс с его собственной частотой колебания усиливаются и их можно зарегистрировать. Чтобы поймать радиоволны, идущие из космоса, применяют зеркала-антенны параболической формы, которые собирают радиоизлучение всей своей площадью и концентрируют его на небольшой антенне. Тем самым повышается чувствительность инструмента.

Большая часть микроволнового излучения (начиная с длины волны 3–5 мм ) проходит через атмосферу. То же можно сказать про ультракороткие волны (УКВ), на которых вещают местные телевизионные и радиостанции (в т. ч. FM-станции) и ведется космическая радиосвязь. Излучение их передатчиков регистрируется только в пределах прямой видимости антенн. Окно прозрачности атмосферы в радиодиапазоне (голубые стрелки на плакате) заканчивается примерно на длине волны 10–30 метров.

Более длинные радиоволны отражаются от ионосферы Земли. Это не позволяет наблюдать космические радиоисточники на более длинных волнах, но зато обеспечивает возможность глобальной коротковолновой радиосвязи. Радиоволны в диапазоне от 10 до 100 метров могут огибать всю Землю, многократно отражаясь от ионосферы и поверхности Земли. Правда, их распространение зависит от состояния ионосферы, на которую сильно влияет солнечная активность. Поэтому коротковолновая связь не отличается высоким качеством и надежностью.

Средние и длинные волны также отражаются от ионосферы, но сильнее затухают с расстоянием. Для того чтобы сигнал можно было поймать на расстоянии более тысячи километров, требуются очень мощные передатчики. Сверхдлинные радиоволны, с длиной в сотни и тысячи километров, огибают Землю уже не благодаря ионосфере, а за счет волновых эффектов, которые также позволяют им проникать на некоторую глубину под поверхность океана. Это свойство используется для экстренной связи с боевыми подводными лодками в погруженном состоянии. Другие радиоволны не проходят через морскую воду, которая из-за растворенных в ней солей представляет из себя хороший проводник и поглощает или отражает радиоизлучение.

Никакого теоретического предела для длины радиоволн неизвестно. На практике экспериментально удалось создать и зарегистрировать радиоволну с длиной волны 38 тыс. км (частота 8 Гц ).

1. ОСОБЕННОСТИ ЦВЕТОВОСПРИЯТИЯ.

Сейчас известно, что цвет - это представление человека о видимой части спектра электромагнитного излучения. Свет воспринимается фоторецепторами, расположенными в задней части зрачка. Эти рецепторы преобразуют энергию электромагнитного излучения в электрические сигналы. Рецепторы сконцентрированы большей частью в ограниченной области сетчатки или ретины, которая называется ямкой. Эта часть сетчатки способна воспринимать детали изображения и цвет гораздо лучше, чем остальная ее часть. С помощью глазных мускул ямка смещается так, чтобы воспринимать разные участки окружающей среды. Обзорное поле, в котором хорошо различаются детали и цвет ограничено приблизительно 2-мя градусами.
Существует два типа рецепторов: палочки и колбочки. Палочки активны только при крайне низкой освещенности (ночное зрение) и не имеют практического значения при восприятии цветных изображений ; они более сконцентрированы по периферии обзорного поля. Колбочки ответственны за восприятие цвета и они сконцентрированы в ямке. Существует три типа колбочек, которые воспринимают длинные, средние и короткие длины волн светового излучения.

Каждый тип колбочек обладает собственной спектральной чувствительностью. Приблизительно считается, что первый тип воспринимает световые волны с длиной от 400 до 500 нм (условно "синюю " составляющую цвета ), второй - от 500 до 600 нм (условно "зеленую " составляющую) и третий - от 600 до 700 нм (условно "красную " составляющую). Цвет ощущается в зависимости от того, волны какой длины и интенсивности присутствуют в свете.

Глаз наиболее чувствителен к зеленым лучам, наименее - к синим . Экспериментально установлено, что среди излучений равной мощности наибольшее световое ощущение вызывает монохроматическое желто-зеленое излучение с длиной волны 555 нм. Спектральная чувствительность глаза зависит от внешней освещенности. В сумерках максимум спектральной световой эффективности сдвигается в сторону синих излучений , что вызвано разной спектральной чувствительностью палочек и колбочек. В темноте синий цвет оказывает большее влияние, чем красный , при равной мощности излучения, а на свету - наоборот.

Разные люди воспринимают один и тот же цвет по-разному. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от настроения и других факторов. Однако, такие различия относятся в основном к тонким оттенкам цвета , поэтому в целом можно утверждать, что большинство людей воспринимает основные цвета одинаково.

2. ЧТО ЕСТЬ ЦВЕТ?

Что такое цвет ? Физика рассматривает свет как электромагнитную волну. Волна - это просто изменение состояния среды или поля, распространяющееся в пространстве с какай-то скоростью. У любой волны есть длина - это расстояние между гребнями волны.

Те длины волн, которые способен воспринимать человеческий глаз носит название видимого света. Например, свет с наибольшей длиной волны мы воспринимаем как красный, а с наименьшей - как фиолетовый. При этом стоит отметить, что наше ухо тоже воспринимает волны, только очень большой длины волны и несколько другой природы. Звук - это колебания вещества. Например в вакууме нет частичек вещества (воздуха например). И там нет звука, звуковая волна не распространяется в вакууме.

Единицей измерения длины волны оптической области спектра излучений является нанометр (нм);

1 нм = 1 х 10 -3 мк (микрон) = 1 х 10 -6 мм (миллиметров).

Цвета , которые мы воспринимаем, различаются в зависимости от длины волны видимого света:

Цвет

Длина волны, нм

Красный

от 620 до 760

Оранжевый

от 585 до 620

Желтый

от 575 до 585

Зеленый

от 510 до 575

Голубой

от 480 до 510

Синий

от 450 до 480

Фиолетовый

от 380 до 450

Порядок расположения цветов просто запомнить по аббревиатуре слов: каждый охотник желает знать, где сидит фазан .

Резкой границы между цветами нет, но среди приведенных выше цветов отсутствует белый ...
Всё дело в том, что никакой определенной длины волны белому свету не соответствует. Тем не менее, границы диапазонов белого света и составляющих его цветов принято характеризовать их длинами волн в вакууме. Таким образом, белый свет - это сложный свет, совокупность волн длинами от 380 до 760 нм.

Причина, по которой человек способен видеть свет заключается в воздействии света определенных длин волн на глазную сетчатку.

При прохождении света через вещество, имеющее преломляющий угол, происходит разложение света на сотавляющие его цвета, при этом изменяются и скорость, и длина волны, а частота колебаний света остается неизменной.

Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет ), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз ). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз ).

Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн. Тем не менее мы можем воспринимать огромный диапазон различных цветов (диапазон волн).

3. ЦВЕТОВАЯ ГАРМОНИЯ.

В теории цвета цветовой круг содержит в себе все цвета , видимые человеком, от фиолетового до красного. Цветовой круг показывает, как цвета связаны между собой, и позволяет определять по определенным правилам гармоничные сочетания этих цветов.

Черный, белый и серый не обозначены на цветовом круге, так как, строго говоря, они не являются цветами. Это нейтральные тона .

3.1. Цветовые сочетания.

В цветовых схемах приведены гармоничные сочетание цветов. Заметьте, что цвета можно и нужно варьировать по насыщенности и светлоте (яркости) . И кстати, часто встречающаяся еще одна гармония : по насыщенности. На картинке представлены возможные варианты цветовой гармонии .


Не применяйте цвета в равных количествах. Сделайте лучше один цвет фоном , а другой пусть будет просто акцентом на нем. Интересно, что дополнительные цвета при смешении дают серый цвет (три основных цвета , кстати, тоже). Поэтому, если вы примените их рядом и в больших количествах, то в глазах зрителя будет происходить смешение до серого!

Вы можете поэксперементироватьь над этим, используя инструмент подбора цветов .

4. ОЩУЩЕНИЕ ГЛУБИНЫ.

Важную роль в создании цветовой композиции играет разделение цветов на теплые и холодные . Это разделение легко заметить на цветовом круге (см. рисунки выше). На этом круге выделяется "теплая" красно-желтая область и "холодная" синяя область , разделенная вертикальной линией. Это разделение трудно объяснить на уровне физики - разделение на "два лагеря" происходит, скорее, на уровне подсознания.

С детства мы привыкли, что солнце, огонь, углы и все источники тепла имеют красно-желтые оттенки , а снег, вода, небо - сине-голубые и сине-зеленые оттенки . Это закрепляется у нас в подсознании, и диктует нам восприятие цвета . Но есть также "нарушители" этого разбиения. Так, светло-бежевая луна, бордовые цвета являются холодными цветами, а светло-голубое свечение нагретых тел имеет теплый цвет .

Яркие, теплые тона создают эффект движения в сторону смотрящего и кажутся ближе. Теплые цвета привлекают внимание и хорошо подходят для выделения важных элементов публикации.

Холодные цвета кажутся удаляющимися и создают эффект движения в сторону от смотрящего. В комбинации, холодные цвета могут вызвать ощущение отчужденности и изоляции, а может, наоборот, быть успокаивающим и ободряющим.

Эффект движения, вызванный сочетанием теплых и холодных цветов , используется дизайнерами. Для фона ими выбирается холодные оттенки , а для объектов на переднем плане - теплые . Так, если Вы посмотрите на фотографии , сделанные на презентациях и пресс-конференциях, Вы увидите докладчиков на голубом фоне . Такой фон придает значительность и важность фигуре докладчика. Этот прием можно порекомендовать начинающим дизайнерам.

Как правило, лучше работают цветовые решения, основанные на доминировании холодной или теплой гаммы цветов, а не на равномерном смешении оттенков . При этом в комбинациях, где преобладают теплые тона , для оформления выделений и усиления контраста могут использоваться холодные оттенки , и наоборот.

Поделиться