Эффективный магнитный момент. Kvant

  1. Магнитный момент - См. Магнетизм. Энциклопедический словарь Брокгауза и Ефрона
  2. магнитный момент - МАГНИТНЫЙ МОМЕНТ векторная величина, характеризующая магн. свойства вещества. М.м. обладают все элементарные частицы и образованные из них системы (атомные ядра, атомы, молекулы). М.м. атомов, молекул и др. Химическая энциклопедия
  3. МАГНИТНЫЙ МОМЕНТ - Основная величина, характеризующая магн. свойства в-ва. Источником магнетизма (М. м.), согласно классич. теории эл.-магн. явлений, явл. макро- и микро(атомные)- электрич. токи. Элем. источником магнетизма считают замкнутый ток. Из опыта и классич. Физический энциклопедический словарь
  4. МАГНИТНЫЙ МОМЕНТ - МАГНИТНЫЙ МОМЕНТ, измерение силы постоянного магнита или токонесущей катушки. Это максимальная поворотная сила (поворотный момент), приложенная к магниту, катушке или электрическому заряду в МАГНИТНОМ ПОЛЕ, деленная на силу поля. Заряженные частицы и атомные ядра также имеют магнитный момент. Научно-технический словарь
  5. МАГНИТНЫЙ МОМЕНТ - МАГНИТНЫЙ МОМЕНТ - векторная величина, характеризующая вещество как источник магнитного поля. Макроскопический магнитный момент создают замкнутые электрические токи и упорядоченно ориентированные магнитные моменты атомных частиц. Большой энциклопедический словарь

При помещении во внешнее поле вещество может реагировать на это поле и само становиться источником магнитного поля (намагничиваться). Такие вещества называют магнетиками (сравните с поведением диэлектриков в электрическом поле). По магнитным свойствам магнетики разделяются на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Разные вещества намагничиваются по-разному. Магнитные свойства вещества определяются магнитными свойствами электронов и атомов. Большая часть веществ намагничивается слабо - это диамагнетики и парамагнетики. Некоторые вещества в обычных условиях (при умеренных температурах) способны намагничиваться очень сильно - это ферромагнетики.

У многих атомов результирующий магнитный момент равен нулю. Вещества, состоящие из таких атомов, и являются диамагиетиками. К ним, например, относятся азот, вода, медь, серебро, поваренная соль NaCl, диоксид кремния Si0 2 . Вещества же, у которых результирующий магнитный момент атома отличен от нуля, относятся к парамагнетикам. Примерами парамагнетиков являются: кислород, алюминий, платина.

В дальнейшем, говоря о магнитных свойствах, будем иметь в виду в основном диамагнетики и парамагнетики, а свойства небольшой группы ферромагнетиков иногда будем оговаривать особо.

Рассмотрим сначала поведение электронов вещества в магнитном поле. Будем считать для простоты, что электрон вращается в атоме вокруг ядра со скоростью v по орбите радиуса г. Такое движение, которое характеризуется орбитальным моментом импульса, по сути является круговым током, который характеризуется соответственно орбитальным магнитным момен-

том р орб. Исходя из периода обращения по окружности Т = - имеем, что

произвольную точку орбиты электрон в единицу времени пересекает -

раз. Поэтому круговой ток, равный прошедшему через точку в единицу времени заряду, дается выражением

Соответственно, орбитальный магнитный момент электрона по формуле (22.3) равен

Помимо орбитального момента импульса электрон имеет также собственный момент импульса, называемый спином . Спин описывается законами квантовой физики и является неотъемлемым свойством электрона - как масса и заряд (см. подробнее в разделе квантовой физики). Собственному моменту импульса соответствует собственный (спиновый) магнитный момент электрона р сп.

Магнитным моментом обладают и ядра атомов, однако эти моменты в тысячи раз меньше моментов электронов, и ими можно обычно пренебречь. В результате суммарный магнитный момент магнетика Р т равен векторной сумме орбитальных и спиновых магнитных моментов электронов магнетика:

Внешнее магнитное поле действует на ориентацию частиц вещества, имеющих магнитные моменты (и микротоков), в результате чего вещество намагничивается. Характеристикой этого процесса является вектор намагниченности J , равный отношению суммарного магнитного момента частиц магнетика к объему магнетика AV :

Намагниченность измеряется в А/м.

Если магнетик поместить во внешнее магнитное полеВ 0 , то в результате

намагничивания возникнет внутреннее поле микротоков В, так что результирующее поле будет равным

Рассмотрим магнетик в виде цилиндра с основанием площадью S и высотой /, помещенный в однородное внешнее магнитное ноле с индукцией В 0 . Такое поле может быть создано, например, с помощью соленоида. Ориентация микротоков во внешнем ноле становится упорядоченной. При этом поле микротоков диамагнетиков направлено противоположно внешнему нолю, а иоле микротоков парамагнетиков совпадает по направлению с внешним

В любом сечении цилиндра упорядоченность микротоков приводит к следующему эффекту (рис. 23.1). Упорядоченные микротоки внутри магнетика компенсируются соседними микротоками, а вдоль боковой поверхности текут нескомпенсированные поверхностные микротоки.

Направление этих нескомпенсированных микротоков параллельно (или антипараллельно) току, текущему в соленоиде, создающем внешнее ноле. В целом же они Рис. 23.1 дают суммарный внутренний ток Этот поверхностный ток создает внутреннее иоле микротоков B v причем связь тока и поля может быть описана формулой (22.21) для ноля соленоида:

Здесь магнитная проницаемость принята равной единице, поскольку роль среды учтена введением поверхностного тока; плотность намотки витков соленоида соответствует одному на всю длину соленоида /: п = 1 //. При этом магнитный момент поверхностного тока определяется намагниченностью всего магнетика:

Из двух последних формул с учетом определения намагниченности (23.4) следует

или в векторном виде

Тогда из формулы (23.5) имеем

Опыт исследования зависимости намагниченности от напряженности внешнего поля показывает, что обычно поле можно считать несильным и в разложении в ряд Тейлора достаточно ограничиться линейным членом:

где безразмерный коэффициент пропорциональности х - магнитная восприимчивость вещества. С учетом этого имеем

Сравнивая последнюю формулу для магнитной индукции с известной формулой (22.1), получим связь магнитной проницаемости и магнитной восприимчивости:

Отметим, что значения магнитной восприимчивости для диамагнетиков и парамагнетиков малы и составляют обычно по модулю 10 "-10 4 (для диамагнетиков) и 10 -8 - 10 3 (для парамагнетиков). При этом для диамагнетиков х х > 0 и р > 1.

Магнитный момент

основная величина, характеризующая магнитные свойства вещества. Источником магнетизма, согласно классической теории электромагнитных явлений, являются электрические макро- и микротоки. Элементарным источником магнетизма считают замкнутый ток. Из опыта и классической теории электромагнитного поля следует, что магнитные действия замкнутого тока (контура с током) определены, если известно произведение (М ) силы тока i на площадь контура σ (М = i σ/c в СГС системе единиц (См. СГС система единиц), с - скорость света). Вектор М и есть, по определению, М. м. Его можно записать и в иной форме: М = m l , где m - эквивалентный Магнитный заряд контура, а l - расстояние между «зарядами» противоположных знаков (+ и - ).

М. м. обладают элементарные частицы, атомные ядра, электронные оболочки атомов и молекул. М. м. элементарных частиц (электронов, протонов, нейтронов и других), как показала квантовая механика, обусловлен существованием у них собственного механического момента - Спин а. М. м. ядер складываются из собственных (спиновых) М. м. образующих эти ядра протонов и нейтронов, а также М. м., связанных с их орбитальным движением внутри ядра. М. м. электронных оболочек атомов и молекул складываются из спиновых и орбитальных М. м. электронов. Спиновый магнитный момент электрона m сп может иметь две равные и противоположно направленные проекции на направление внешнего магнитного поля Н. Абсолютная величина проекции

где μ в = (9,274096 ±0,000065)·10 -21 эрг/гс - Бора магнетон , h - Планка постоянная , е и m e - заряд и масса электрона, с - скорость света; S H - проекция спинового механического момента на направление поляH . Абсолютная величина спинового М. м.

где s = 1 / 2 - спиновое квантовое число (См. Квантовые числа). Отношение спинового М. м. к механическому моменту (спину)

так как спин

Исследования атомных спектров показали, что m Н сп фактически равно не m в, а m в (1 + 0,0116). Это обусловлено действием на электрон так называемых нулевых колебаний электромагнитного поля (см. Квантовая электродинамика , Радиационные поправки).

Орбитальный М. м. электрона m орб связан с механическим орбитальным моментом орб соотношением g opб = |m орб | / | орб | = |e |/2m e c , то есть Магнитомеханическое отношение g opб в два раза меньше, чем g cп. Квантовая механика допускает лишь дискретный ряд возможных проекций m орб на направление внешнего поля (так называемое Квантование пространственное): m Н орб = m l m в , где m l - магнитное квантовое число, принимающее 2l + 1 значений (0, ±1, ±2,..., ±l , где l - орбитальное квантовое число). В многоэлектронных атомах орбитальный и спиновый М. м. определяются квантовыми числами L и S суммарного орбитального и спинового моментов. Сложение этих моментов проводится по правилам пространственного квантования. В силу неравенства магнитомеханических отношений для спина электрона и его орбитального движения (g cп ¹ g opб) результирующий М. м. оболочки атома не будет параллелен или антипараллелен её результирующему механическому моменту J . Поэтому часто рассматривают слагающую полного М. м. на направление вектора J , равную

где g J - магнитомеханическое отношение электронной оболочки, J - полное угловое квантовое число.

М. м. протона, спин которого равен

где M p - масса протона, которая в 1836,5 раз больше m e , m яд - ядерный магнетон, равный 1/1836,5m в. У нейтрона же М. м. должен был бы отсутствовать, поскольку он лишён заряда. Однако опыт показал, что М. м. протона m p = 2,7927m яд, а нейтрона m n = -1,91315m яд. Это обусловлено наличием мезонных полей около нуклонов, определяющих их специфические ядерные взаимодействия (см. Ядерные силы , Мезоны) и влияющих на их электромагнитные свойства. Суммарные М. м. сложных атомных ядер не являются кратными m яд или m p и m n . Таким образом, М. м. ядра калия

Для характеристики магнитного состояния макроскопических тел вычисляется среднее значение результирующего М. м. всех образующих тело микрочастиц. Отнесённый к единице объёма тела М. м. называется намагниченностью. Для макротел, особенно в случае тел с атомным магнитным упорядочением (ферро-, ферри- и антиферромагнетики), вводят понятие средних атомных М. м. как среднего значения М. м., приходящегося на один атом (ион) - носитель М. м. в теле. В веществах с магнитным порядком эти средние атомные М. м. получаются как частное от деления самопроизвольной намагниченности ферромагнитных тел или магнитных подрешёток в ферри- и антиферромагнетиках (при абсолютном нуле температуры) на число атомов - носителей М. м. в единице объёма. Обычно эти средние атомные М. м. отличаются от М. м. изолированных атомов; их значения в магнетонах Бора m в оказываются дробными (например, в переходных d-металлах Fe, Со и Ni соответственно 2,218 m в, 1,715 m в и 0,604 m в) Это различие обусловлено изменением движения d-электронов (носителей М. м.) в кристалле по сравнению с движением в изолированных атомах. В случае редкоземельных металлов (лантанидов), а также неметаллических ферро- или ферримагнитных соединений (например, ферриты) недостроенные d- или f-слои электронной оболочки (основные атомные носители М. м.) соседних ионов в кристалле перекрываются слабо, поэтому заметной коллективизации этих слоев (как в d-металлах) нет и М. м. таких тел изменяются мало по сравнению с изолированными атомами. Непосредственное опытное определение М. м. на атомах в кристалле стало возможным в результате применения методов магнитной нейтронографии, радиоспектроскопии (ЯМР, ЭПР, ФМР и т.п.) и Мёссбауэра эффекта. Для парамагнетиков также можно ввести понятие среднего атомного М. м., который определяется через найденную на опыте постоянную Кюри, входящую в выражение для Кюри закон а или Кюри - Вейса закон а (см. Парамагнетизм).

Лит.: Тамм И. Е., Основы теории электричества, 8 изд., М., 1966; Ландау Л. Д. и Лифшиц Е. М., Электродинамика сплошных сред, М., 1959; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Вонсовский С. В., Магнетизм микрочастиц, М., 1973.

С. В. Вонсовский.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Магнитный момент" в других словарях:

    Размерность L2I Единицы измерения СИ А⋅м2 … Википедия

    Основная величина, характеризующая магн. свойства в ва. Источником магнетизма (М. м.), согласно классич. теории эл. магн. явлений, явл. макро и микро(атомные) электрич. токи. Элем. источником магнетизма считают замкнутый ток. Из опыта и классич.… … Физическая энциклопедия

    Большой Энциклопедический словарь

    МАГНИТНЫЙ МОМЕНТ, измерение силы постоянного магнита или токонесущей катушки. Это максимальная поворотная сила (поворотный момент), приложенная к магниту, катушке или электрическому заряду в МАГНИТНОМ ПОЛЕ, деленная на силу поля. Заряженные… … Научно-технический энциклопедический словарь

    МАГНИТНЫЙ МОМЕНТ - физ. величина, характеризующая магнитные свойства тел и частиц вещества (электронов, нуклонов, атомов и т.д.); чем больше магнитный момент, тем сильнее (см.) тела; магнитным моментом определяются магнитное (см.). Поскольку всякий электрический… … Большая политехническая энциклопедия

    - (Magnetic moment) произведение из магнитной массы данного магнита на расстояние между его полюсами. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    магнитный момент - Хар ка магн. св в тела, усл. выраж. произвед. величины магн. заряда в каждом полюсе на расстояние м ду полюсами. Тематики металлургия в целом EN magnetic moment … Справочник технического переводчика

    Векторная величина, характеризующая вещество как источник магнитного поля. Макроскопический магнитный момент создают замкнутые электрические токи и упорядоченно ориентированные магнитные моменты атомных частиц. У микрочастиц различают орбитальные … Энциклопедический словарь

Опыты Штерна и Герлаха

В $1921$ г. О. Штерн выдвинул идею опыта измерения магнитного момента атома. Данный эксперимент он выполнил в соавторстве с В. Герлахом в $1922$ г. Метод Штерна и Герлаха использует то, что пучок атомов (молекул) способен отклоняться в неоднородном магнитном поле. Атом, который имеет магнитный момент можно представить как элементарный магнит, имеющий малые, но конечные размеры. Если подобный магнит разместить в однородном магнитном поле, то он не испытывает силы. Поле будет действовать на северный и южный полюса такого магнита с силами, которые равны по модулю и противоположны по направлению. В результате, центр инерции атома будет покоиться или двигаться по прямой. (При этом ось магнита может совершать колебания или прецессировать). То есть, в однородном магнитном поле не возникает сил, которые действуют на атом и сообщают ему ускорение. Однородное магнитное поле не изменяет угол между направлениями индукции магнитного поля и магнитного момента атома.

Ситуация складывается иначе, если внешнее поле является неоднородным. В таком случае силы, которые действуют на северный и южный полюса магнита не равны. Результирующая сила, действующая на магнит отлична от нуля, и она сообщает атому ускорение, по полю или против него. Как результат, при перемещении в неоднородном поле рассматриваемый нами магнит отклонится от первоначального направления движения. При этом размер отклонения зависит от степени неоднородности поля. Для того, чтобы получить существенные отклонения поле должно резко изменяться уже в пределах длины магнита (линейные размеры атома $\approx {10}^{-8}см$). Такой неоднородности экспериментаторы добились с помощью конструкции магнита, который создавал поле. Один магнит в опыте имел вид лезвия, другой был плоским или обладал выемкой. Магнитные линии сгущались у «лезвия», так что напряженность в этой области была существенно больше, чем у плоского полюса. Тонкий пучок атомов пролетал между данными магнитами. Отдельные атомы отклонялись в созданном поле. Следы отдельных частиц наблюдались на экране.

Согласно представлениям классической физики в атомном пучке магнитные моменты имеют различные направления по отношению к некоторой оси $Z$. Что означает: проекция магнитного момента ($p_{mz}$) на данную ось принимает все значения интервала от $\left|p_m\right|$ до -$\left|p_m\right|$ (где $\left|p_{mz}\right|-$ модуль магнитного момента). На экране пучок должен получиться расширившимся. Однако, в квантовой физике, если учесть квантование, то возможными становятся не все ориентации магнитного момента, а только конечное их количество. Так, на экране след пучка атомов получался расщепленным на некоторое число отдельных следов.

Поставленные эксперименты показали, что например, пучок атомов лития расщепился на $24$ пучка. Это является обоснованным, так как основной термом $Li - 2S$ -- терм (один валентный электрон, имеющий спин $\frac{1}{2}\ $ на s --орбите, $l=0).$ По размерам расщепления можно сделать вывод о величине магнитного момента. Так Герлах получил доказательство того, что спиновый магнитный момент равен магнетону Бора. Исследования разных элементов показали полное согласование с теорией.

Штерн и Раби измерили магнитные моменты ядер, применяя данный подход.

Итак, если проекция $p_{mz}$ квантована, вместе с ней квантована средняя сила, которая действует на атом со стороны магнитного поля. Опыты Штерна и Герлаха доказали квантование проекции магнитного квантового числа на ось $Z$. Получилось, что магнитные моменты атомов направлены параллельно оси $Z$, под углом к данной оси они направлены быть не могут, так пришлось принять то, что ориентация магнитных моментов относительно магнитного поля изменяется дискретно. Данное явление было названо пространственным квантованием. Дискретность не только состояния атомов, но и ориентировок магнитных моментов атома во внешнем поле -- принципиально новое свойство перемещения атомов.

Полностью опыты были объяснены после открытия спина электрона , когда получили то, что магнитный момент атома вызван не орбитальным моментом электрона, а внутренним магнитным моментом частицы, который связан с его внутренним механическим моментом (спином).

Расчет движения магнитного момента в неоднородном поле

Пусть атом движется в неоднородном магнитном поле, его магнитный момент равен ${\overrightarrow{p}}_m$. На него действует сила:

Вцелом, атом является электрически нейтральной частицей, поэтому другие силы на него в магнитном поле не действуют. Исследуя движение атома в неоднородном поле можно измерить его магнитный момент. Допустим, что атом перемещается по оси $X$, неоднородность поля создана в направлении оси $Z$ (рис.1):

Рисунок 1.

\frac{}{}\frac{}{}

Используя условия (2) выражение (1) преобразуем к виду:

Магнитное поле симметрично относительно плоскости y=0. Можно предположить, что атом перемещается в данной плоскости, значит $B_x=0.$ Равенство $B_y=0$ нарушается только в небольших областях у краев магнита (этим нарушением пренебрегаем). Из выше сказанного следует, что:

В таком случае выражения (3) имеют вид:

Прецессия атомов в магнитном поле не влияет на $p_{mz}$. Уравнение движения атома в пространстве между магнитами запишем в виде:

где $m$ -- масса атома. Если атом проходит путь $a$ между магнитами, то он отклоняется от оси X на расстояние, равное:

где $v$ -- скорость атома по оси $X$. Уходя из пространства между магнитами атом продолжает перемещаться под неизменным по отношению к оси $X$ углом по прямой. В формуле (7) величины $\frac{\partial B_z}{\partial z}$, $a$, $v\ и\ m$ известны, измерив z можно сосчитать $p_{mz}$.

Пример 1

Задание: На сколько компонент, при проведении опыта аналогичного опыту Штерна и Герлаха, произойдёт расщепление пучка атомов, если они находятся в состоянии ${}^3{D_1}$?

Решение:

Терм расщепляется на $N=2J+1$ подуровней, если множитель Ланде $g\ne 0$, где

Для нахождения числа компонент, на которое расщепится пучок атомов, нам следует определить полное внутреннее квантовое число $(J)$, мультиплетность $(S)$, орбитальное квантовое число, сравнить множитель Ланде с нулем и если он отличен от нуля, то вычислить число подуровней.

1) Для этого рассмотрим структуру символической записи состояния атома ($3D_1$). Наш терм расшифруется следующим образом: символу $D$ соответствует орбитальное квантовое число $l=2$, $J=1$, мультиплетность $(S)$ равна $2S+1=3\to S=1$.

Вычислим $g,$ применив формулу (1.1):

Количество компонент, на которые расщепится пучок атомов, равен:

Ответ: $N=3.$

Пример 2

Задание: Почему в опыте Штерна и Герлаха по обнаружению спина электрона применяли пучок атомов водорода, которые находились в $1s$ состоянии?

Решение:

В $s-$ состоянии момент импульса электрона $(L)$ равен нулю, так как $l=0$:

Магнитный момент атома, который связан с движением электрона по орбите, пропорционален механическому моменту:

\[{\overrightarrow{p}}_m=-\frac{q_e}{2m}\overrightarrow{L}(2.2)\]

следовательно, равен нулю. Это означает, что магнитное поле не должно влиять на перемещение атомов водорода в основном состоянии, то есть расщеплять поток частиц. Но при использовании спектральных приборов было показано, что линии спектра водорода проявляют наличие тонкую структуру (дублеты) даже если магнитного поля нет. Для того, чтобы объяснить наличие тонко структуры и была выдвинута идея собственного механического момента импульса электрона в пространстве (спина).

В предыдущем параграфе было выяснено, что действие магнитного поля на плоский контур с током определяется магнитным моментом контура , равным произведению силы тока в контуре на площадь контура (см. формулу (118.1)).

Единицей магнитного момента является ампер-метр в квадрате (). Чтобы дать представление об этой единице, укажем, что при силе тока 1 А магнитным моментом, равным 1 , обладает круговой контур радиуса 0,564 м () либо квадратный контур со стороной квадрата, равной 1 м. При силе тока 10 А магнитным моментом 1 обладает круговой контур радиуса 0,178 м () и т. д.

Электрон, движущийся с большой скоростью по круговой орбите, эквивалентен круговому току, сила которого равна произведению заряда электрона на частоту вращения электрона по орбите: . Если радиус орбиты равен , а скорость электрона – , то и, следовательно, . Магнитный момент, соответствующий этому току,

.

Магнитный момент является векторной величиной, направленной по нормали к контуру. Из двух возможных направлений нормали выбирается то, которое связано с направлением тока в контуре правилом правого винта (рис. 211). Вращение винта с правой нарезкой в направлении, совпадающем с направлением тока в контуре, вызывает продольное перемещение винта в направлении . Выбранная таким образом нормаль называется положительной. Направление вектора принимается совпадающим с направлением положительной нормали .

Рис. 211. Вращение головки винта в направлении тока вызывает перемещение винта в направлении вектора

Теперь мы можем уточнить определение направления магнитной индукции . За направление магнитной индукции принимается направление, в котором устанавливается под действием поля положительная нормаль к контуру с током, т. е. направление, в котором устанавливается вектор .

Единица магнитной индукции в СИ называется тесла (Тл) в честь сербского ученого Николы Теслы (1856-1943). Один тесла равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющий магнитный момент один ампер-метр в квадрате, действует максимальный вращающий момент, равный одному ньютон-метру.

Из формулы (118.2) следует, что

119.1. Круговой контур радиуса 5 см, по которому течет ток силы 0,01 А, испытывает в однородном магнитном поле максимальный вращающий момент, равный Н×м. Какова магнитная индукция этого поля?

119.2. Какой вращающий момент действует на тот же контур, если нормаль к контуру образует с направлением поля угол 30°?

119.3. Найдите магнитный момент тока, создаваемого электроном, движущимся по круговой орбите радиуса м со скоростью м/с. Заряд электрона равен Кл.

Поделиться