Ядерное оружие и последствия его применения. Синтез новых элементов. Механическое воздействие ударной волны

Ядерным оружием называют боеприпасы, действие которых основано на использовании внутриядерной энергии, выделяющейся при ядерных реакциях деления или синтеза. Центром ядерного взрыва называют точку, в которой происходит вспышка или находится центр огненного шара, а эпицентром - проекцию центра взрыва на земную или водную поверхность.

5.1.1 Виды ядерных зарядов

Атомные заряды

Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и т.д.). Цепная реакция деления развивается не в любом количестве делящегося вещества, а лишь только в определенной для каждого вещества массе. Наименьшее количество делящегося вещества, в котором возможна саморазвивающаяся цепная ядерная реакция, называют критической массой. Уменьшение критической массы будет наблюдаться при увеличении плотности вещества.

Делящееся вещество в атомном заряде находится в подкритическом состоянии. По принципу его перевода в надкритическое состояние атомные заряды делятся на пушечные и имплозивного типа.

В зарядах пушечного типа две и более частей делящегося вещества, масса каждой из которых меньше критической, быстро соединяются друг с другом в надкритическую массу в результате взрыва обычного взрывчатого вещества (выстреливания одной части в другую).

При создании зарядов по такой схеме трудно обеспечить высокую надкритичность, вследствие чего его коэффициент полезного действия невелик. Достоинством схемы пушечного типа является возможность создания зарядов малого диаметра и высокой стойкости к действию механических нагрузок, что позволяет использовать их в артиллерийских снарядах и минах.

В зарядах имплозивного типа делящееся вещество, имеющее при нормальной плотности массу меньше критической, переводится в надкритическое состояние повышением его плотности в результате обжатия с помощью взрыва обычного взрывчатого вещества. В таких зарядах представляется возможность получить высокую надкритичность и, следовательно, высокий коэффициент полезного использования делящегося вещества.

Термоядерные заряды

Действие термоядерного оружия основывается на реакции синтеза ядер легких элементов. Для возникновения цепной термоядерной реакции необходима очень высокая (порядка нескольких миллионов градусов) температура, которая достигается взрывом обычного атомного заряда. В качестве термоядерного горючего используется обычно дейтрид лития-6 (твердое вещество, представляющее собой соединение лития-6 и дейтерия).

Нейтронные заряды

Нейтронный заряд представляет собой особый вид термоядерного заряда малой мощности с повышенным нейтронным излучением. Как известно, при взрыве ядерного боеприпаса ударная волна несет около 50% энергии, а проникающая радиация не более 5%. Предназначение ядерного заряда нейтронного типа заключается в том, чтобы перераспределить соотношение поражающих факторов в пользу проникающей радиации, а точнее, потока нейтронов.

По данным иностранной печати, американским специалистам удалось создать подобные снаряды для боеголовок тактических ракет "Лэнс" и 155-миллиметровых артиллерийских систем. При взрыве нейтронного снаряда ударная волна и световое излучение вызывают сплошные разрушения в радиусе 200-300 м. А доза нейтронного излучения, которая возникает на расстоянии 800 м от точки взрыва нейтронной боеголовки ракеты "Лэес", почти сразу лишает человеческий организм жизнеспособности.

"Чистый" заряд

Чистый заряд - это ядерный заряд, при взрыве которого выход долгоживущих радиоактивных изотопов существенно снижен.

Ядерные боеприпасы применяются для снаряжения авиабомб, фугасов, торпед, артиллерийских снарядов.

Средствами доставки ядерных боеприпасов могут являться баллистические ракеты, крылатые и зенитные ракеты, авиация.

Мощность ядерных боеприпасов
Ядерное оружие обладает колоссальной мощностью. При делении урана массой порядка килограмма освобождается такое же количество энергии, как при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими. Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Под тротиловым эквивалентом понимается энергетическая характеристика взры-ва ядерного или термоядерного заряда. Иными словами, тротиловый эквивалент - это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ).

В зависимости от мощности ядерные боеприпасы делят на калибры:

  • сверхмалый (менее 1 кТ);
  • малый (от 1 до 10 кТ);
  • средний (от 10 до 100 кТ);
  • крупный (от 100 кТ до 1 МгТ);
  • сверхкрупный (свыше 1 МгТ).

Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного и среднего калибров; ядерными - сверхмалого, малого и среднего калибров, нейтронными - сверхмалого и малого калибров.

Виды ядерных взрывов

В зависимости от задач, решаемых ядерным оружием, от вида и расположения объектов, по которым планируются ядерные взрывы, а также от характера предстоящих боевых действий ядерные взрывы могут быть осуществлены в воздухе, у поверхности земли (воды) и под землей (водой). В соответствии с этим различают следующие виды ядерных взрывов: воздушный, высотный (в разряженных слоях атмосферы), наземный (надводный), подземный (подводный).

5.1.2 Поражающие факторы ядерного взрыва

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

  • ударная волна;
  • световое излучение;
  • проникающая радиация;
  • радиоактивное заражение местности;
  • электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Ударная волна

Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне вполне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 с ударная волна проходит около 1000 м, за 5 с - 2000 м, за 8 с - около 3000 м.

Поражающее действия ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери населения могут оказаться большими, чем от непосредственного действия ударной волны. Поражения, наносимые ударной волной, подразделяются на легкие, средние, тяжелые и крайне тяжелые.

Легкие поражения наступают при избыточном давлении 20-40 кПа (0,2-0,4 кгс/см2) и характеризуются временным повреждением органов слуха, общей легкой контузией, ушибами и вывихами конечностей. Средние поражения возникают при избыточном давлении 40-60 кПа (0,4-0,6 кгс/см2). При этом могут возникнуть вывихи конечностей, контузия головного мозга, повреждение органов слуха, кровотечение из носа и ушей. Тяжелые поражения возможны при избыточном давлении ударной волны 60-100 кПа (0,6-1,0 кгс/см2) и характеризуются сильной контузией всего организма; при этом могут наблюдаться повреждения головного мозга и органов брюшной полости, сильное кровотечение из носа и ушей, тяжелые переломы и вывихи конечностей. Крайне тяжелые травмы могут привести к смертельному исходу при избыточном давлении более 100 кПа (1,0 кгс/см2).

Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние - до 2 км, тяжелые - до 1,5 км, крайне тяжелые - до 1,0 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва.

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. В случае отсутствия убежищ используются естественные укрытия и рельеф местности.

При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются слабым, средним, сильным и полным разрушениями.

Слабое разрушение сопровождается разрушением оконных и дверных заполнений и легких перегородок, частично разрушается кровля, возможны трещины в стенах верхних этажей. Подвалы и нижние этажи сохраняются полностью.

Среднее разрушение проявляется в разрушении крыш, внутренних перегородок, окон, обрушением чердачных перекрытий, трещинами в стенах. Восстановление зданий возможно при проведении капитальных ремонтных работ.

Сильное разрушение характеризуется разрушением несущих конструкций и перекрытий верхних этажей, появлением трещин в стенах. Использование зданий становится невозможным. Ремонт и восстановление зданий становится нецелесообразным.

При полном разрушении обрушаются все основные элементы здания, включая и несущие конструкции. Использовать такие здания невозможно, и, чтобы они не представляли опасность, их полностью обрушают.

Световое излучение

Световое излучение ядерного взрыва представляет собой поток лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное излучение. Источником светового излучения является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость светового излучения в первую секунду в несколько раз превосходит яркость Солнца. Максимальная температура светящейся области находится в пределах 8000-10000 оС.

Поражающее действие светового излучения характеризуется световым импульсом. Световым импульсом называется отношение количества световой энергии к площади освещенной поверхности, расположенной перпендикулярно распространению световых лучей. Единицей светового импульса является джоуль на квадратный метр (Дж/м2) или калория на квадратный сантиметр (кал/см2).

Поглощенная энергия светового излучения переходит в тепловую, что приводит к разогреву поверхностного слоя материала. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение горючего материала и растрескивание или оплавление негорючего, что может привести к огромным пожарам. При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия.

Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от ожогов, вызываемых огнем или кипятком. Они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности. В зависимости от воспринятой величины светового импульса ожоги делятся на три степени.

Ожоги первой степени возникают при световом импульсе 2-4 кал/см2 и проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени при световом импульсе 4-10 кал/см2 на коже появляются пузыри. При ожогах третьей степени при световом импульсе 10-15 кал/см2 наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени - на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кТ и 1 МгТ.

Защитой от светового излучения могут служить различные предметы, создающие тень, но лучшие результаты достигаются при использовании убежищ и укрытий.

Проникающая радиация

Проникающая радиация представляет собой поток гамма квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма кванты и нейтроны распространяются во все стороны от центра взрыва.

С увеличением расстояния от взрыва количество гамма квантов и нейтронов, проходящее через единицу поверхности, уменьшается. При подземном и подводном ядерных взрывов действие проникающей радиации распространяется на расстояния, значительно меньшие, чем при наземных и воздушных взрывах, что объясняется поглощением потока нейтронов и гамма квантов землей и водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением.

Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее), наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью гамма квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к нарушению жизненных функций отдельных органов и систем. Под влиянием ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (Р). Дозе радиации 1Р соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов.

В зависимости от дозы излучения различают четыре степени лучевой болезни. Первая (легкая) возникает при получении человеком дозы от 100 до 200 Р. Она характеризуется общей слабостью, легкой тошнотой, кратковременным головокружением, повышением потливости; личный состав, получивший такую дозу, обычно не выходит из строя. Вторая (средняя) степень лучевой болезни развивается при получении дозы 200-300 Р; в этом случае признаки поражения - головная боль, повышение температуры, желудочно-кишечное расстройство - проявляются более резко и быстро, личный состав в большинстве случаев выходит из строя. Третья (тяжелая) степень лучевой болезни возникает при дозе свыше 300-500 Р; она характеризуется тяжелыми головными болями, тошнотой, сильной общей слабостью, головокружением и другими недомоганиями; тяжелая форма нередко приводит к смертельному исходу. Доза облучения свыше 500 Р вызывает лучевую болезнь четвертой степени и для человека обычно считается летальной.

Защитой от проникающей радиации служат различные материалы, ослабляющие поток гамма- и нейтронного излучений. Степень ослабления проникающей радиации зависит от свойств материалов и толщины защитного слоя. Ослабление интенсивности гамма- и нейтронного излучений характеризуется слоем половинного ослабления, который зависит от плотности материалов.

Слой половинного ослабления - это слой вещества, при прохождении которого интенсивность гамма-лучей или нейтронов уменьшается в два раза.

Радиоактивное заражение

Радиоактивное заражение людей, боевой техники, местности и различных объектов при ядерном взрыве обусловливается осколками деления вещества заряда (Pu-239, U-235, U-238) и не прореагировавшей частью заряда, выпадающими из облака взрыва, а также наведенной радиоактивностью. С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва.

При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами (радионуклидами), образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета-активны, распад многих из них сопровождается гамма-излучением. Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики - от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к эпицентру.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ она составляет 25 км. По мере продвижения облака из него выпадают сначала наиболее крупные частицы, а затем все более и более мелкие, образуя по пути движения зону радиоактивного заражения, так называемый след облака. Размеры следа зависят главным образом от мощности ядерного боеприпаса, а также от скорости ветра и могут достигать в длину несколько сотен и в ширину несколько десятков километров.

Степень радиоактивного заражения местности характеризуется уровнем радиации на определенное время после взрыва. Уровнем радиации называют мощность экспозиционной дозы (Р/ч) на высоте 0,7-1 м над зараженной поверхностью.

Возникающие зоны радиоактивного заражения по степени опасности принято делить на следующие четыре зоны.

Зона Г - чрезвычайно опасного заражения. Ее площадь составляет 2-3% площади следа облака взрыва. Уровень радиации составляет 800 Р/ч.

Зона В - опасного заражения. Она занимает примерно 8-10% площади следа облака взрыва; уровень радиации 240 Р/ч.

Зона Б - сильного заражения, на долю которой приходится примерно 10 % площади радиоактивного следа, уровень радиации 80 Р/ч.

Зона А - умеренного заражения площадью 70-80 % от площади всего следа взрыва. Уровень радиации на внешней границе зоны через 1 час после взрыва составляет 8 Р/ч.

Поражения в результате внутреннего облучения появляются вследствие попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм.

На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

Электромагнитный импульс

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, технике, на земле или на других объектах. Действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной аппаратуре, где под действием ЭМИ наводятся электрические токи и напряжения, которые могут вызвать пробой электроизоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов и других элементов радиотехнических устройств. Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Сильные электромагнитные поля могут повредить электрические цепи и нарушить работу неэкранированного электротехнического оборудования.

Высотный взрыв способен создать помехи в работе средств связи на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры.

5.1.3 Очаг ядерного поражения

Очагом ядерного поражения называется территория, на которой под воздействием поражающих факторов ядерного взрыва возникают разрушения зданий и сооружений, пожары, радиоактивное заражение местности и поражения населения. Одновременное воздействие ударной волны, светового излучения и проникающей радиации в значительной мере обусловливает комбинированный характер поражающего действия взрыва ядерного боеприпаса на людей, военную технику и сооружения. При комбинированном поражении людей травмы и контузии от воздействия ударной волны могут сочетаться с ожогами от светового излучения с одновременным возгоранием от светового излучения. Радиоэлектронная аппаратура и приборы, кроме того, могут потерять работоспособность в результате воздействия электромагнитного импульса (ЭМИ).

Размеры очага тем больше, чем мощнее ядерный взрыв. Характер разрушений в очаге зависит также от прочности конструкций зданий и сооружений, их этажности и плотности застройки.

За внешнюю границу очага ядерного поражения принимают условную линию на местности, проведенную на таком расстоянии от эпицентра взрыва, где величина избыточного давления ударной волны равна 10 кПа.

Но как бы то ни было, атомная бомба у СССР появилась, а 4 октября 1957 года СССР запустил в космос первый искусственный спутник Земли, тем самым полностью нарушив милитаристские планы США и НАТО. Так было предупреждено начало Третьей мировой войны. Начался отсчет новой эпохи – мира во всем мире под угрозой всеобщего уничтожения.

3. Виды ядерных зарядов

3 .1 ) Атомные заряды.

Действие атомного оружия основывается на реакции деления тяжелых ядер (уран-235, плутоний-239 и т.д.). Цепная реакция деления развивается не в любом количестве делящегося вещества, а лишь только в определенной для каждого вещества массе. Наименьшее количество делящегося вещества, в котором возможна саморазвивающаяся цепная ядерная реакция, называют критической массой. Уменьшение критической массы будет наблюдаться при увеличении плотности вещества.

Делящееся вещество в атомном заряде находится в подкритическом состоянии. По принципу его перевода в надкритическое состояние атомные заряды делятся на пушечные и имплозивного типа. В зарядах пушечного типа две и более частей делящегося вещества, масса каждой из которых меньше критической, быстро соединяются друг с другом в надкритическую массу в результате взрыва обычного взрывчатого вещества (выстреливания одной части в другую). При создании зарядов по такой схеме трудно обеспечить высокую надкритичность, вследствие чего его коэффициент полезного действия невелик. Достоинством схемы пушечного типа является возможность создания зарядов малого диаметра и высокой стойкости к действию механических нагрузок, что позволяет использовать их в артиллерийских снарядах и минах.

В зарядах имплозивного типа делящееся вещество, имеющее при нормальной плотности массу меньше критической, переводится в надкритическое состояние повышением его плотности в результате обжатия с помощью взрыва обычного взрывчатого вещества. В таких зарядах представляется возможность получить высокую надкритичность и, следовательно, высокий коэффициент полезного использования делящегося вещества.

3. 2 ) Термоядерные заряды.

Действие термоядерного оружия основывается на реакции синтеза ядер легких элементов. Для возникновения цепной термоядерной реакции необходима очень высокая (порядка нескольких миллионов градусов) температура, которая достигается взрывом обычного атомного заряда. В качестве термоядерного горючего используется обычно дейтрид лития-6 (твердое вещество, представляющее собой соединение лития-6 и дейтерия).

3. 3 ) Нейтронные заряды.

Нейтронный заряд представляет собой особый вид термоядерного заряда, в котором резко увеличен выход нейтронов. Для боевой части ракеты "Лэнс" на долю реакции синтеза приходится порядка 70% освобождающейся энергии.

3 .4 )"Чистый" заряд .

Чистый заряд-это ядерный заряд, при взрыве которого выход долгоживущих радиоактивных изотопов существенно снижен.

4. Конструкция и способы доставки

Основными элементами ядерных боеприпасов являются:

Система автоматики

Корпус предназначен для размещения ядерного заряда и системы автоматики, а также предохраняет их от механического, а в некоторых случаях и от теплового воздействия. Система автоматики обеспечивает взрыв ядерного заряда в заданный момент времени и исключает его случайное или преждевременное срабатывание. Она включает:

Систему предохранения и взведения

Систему аварийного подрыва

Систему подрыва заряда

Источник питания

Систему датчиков подрыва

Средствами доставки ядерных боеприпасов могут являться баллистические ракеты, крылатые и зенитные ракеты, авиация. Ядерные боеприпасы применяются для снаряжения авиабомб, фугасов, торпед, артиллерийских снарядов (203,2 мм СГ и 155 мм СГ-США).

5. Мощность ядерных боеприпасов

Ядерное оружие обладает колоссальной мощностью. При делении урана массой порядка килограмма освобождается такое же количество энергии, как при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими. Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Тротиловый эквивалент - это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ).

В зависимости от мощности ядерные боеприпасы делят на калибры:

Сверхмалый (менее 1кТ)

Малый (от 1 до 10 кТ)

Средний (от 10 до 100 кТ)

Крупный (от 100 кТ до 1 МгТ)

Сверхкрупный (свыше 1 МгТ)

Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного и среднего калибров; ядерными - сверхмалого, малого и среднего калибров, Нейтронными - сверхмалого и малого калибров.

6. Виды ядерных взрывов

В зависимости от задач, решаемых ядерным оружием, от вида и расположения объектов, по которым планируются ядерные удары, а также от характера предстоящих боевых действий ядерные взрывы могут быть осуществлены в воздухе, у поверхности земли (воды) и под землей (водой). В соответствии с этим различают следующие виды ядерных взрывов:

Воздушный (высокий и низкий)

Наземный (надводный)

Подземный (подводный)

7. Применение первого атомного оружия

Едва смолкли громовые раскаты первого ядерного взрыва, а в Сан-Франциско уже грузили на борт самого быстроходного крейсера военно-морских сил США «Индианаполис» атомные бомбы, предназначенные для бомбардировки японских городов. Бомбы были доставлены на остров Тиниан, с которого американские бомбардировщики ежедневно совершали налеты на Японию. Бомбы были собраны на авиационной базе. Специальное авиационное соединение ждало приказа.

Как известно, многие ученые-атомники надеялись, что ультиматум, в котором объективно оценивалось положение Японии после капитуляции гитлеровской Германии и конкретно излагались гибельные для нее последствия, должен склонить силы рассудка в Японии к капитуляции. Ученые считали, что США обрушат на Японию свое новое оружие, обладающее ни с чем не сравнимой мощью, лишь в случае ее отказа принять ультиматум.

Кабинет Судзуки 28 июля отклонил Потсдамскую декларацию, что дало правительству США желанный предлог для атомной бомбардировки японских городов.

Через две недели на жителей двух городов - Хиросима и Нагасаки - обрушился атомный смерч, раскрыв смысл туманных формулировок ультиматума. Но те, кто взял на себя ответственность за нанесение ядерного удара и похвалялся в свое время проявленной при этом «решительностью», не прочь все же снять с себя ответственность теперь.

И вот наступила последняя ночь Хиросимы. 6 августа 1945 г. 8 часов 11 минут, огненный шар обрушился на город. В одно мгновение он сжег заживо и искалечил сотни тысяч людей. Тысячи домов превратились в пепел, который потоком воздуха был подброшен ввысь на несколько километров. Город вспыхнул как факел. Смертоносные частицы начали свою разрушительную работу в радиусе полутора километров.

Ядерный заряд

устройство, содержащее запас ядерной энергии, заключённой в определённых веществах, и приспособления, которые обеспечивают быстрое освобождение энергии для осуществления ядерного взрыва. Я. з. бывают двух типов, один из которых по традиции называется атомным, другой - водородным. Действие Я. з. 1-го типа (атомной бомбы) основано на освобождении ядерной энергии при делении некоторых тяжёлых ядер (урана 235 U, плутония 239 Pu, см. Ядерный взрыв); действие Я. з. 2-го типа (водородной бомбы) - на термоядерной реакции (См. Термоядерные реакции) синтеза ядер гелия из более лёгких ядер (дейтерия, трития или их смеси с 6 Li), при которой выделяется примерно в 4 раза больше энергии, чем при распаде одинакового по массе количества делящегося вещества. Испытывались Я. з. мощностью от нескольких кт до нескольких десятков Мт тротилового эквивалента (См. Тротиловый эквивалент). Мощность Я. з. определяется как количеством содержащегося в заряде делящегося вещества или изотопов водорода, так и его конструкционными особенностями, создающими условия для вступления в ядерную реакцию максимального количества вещества. Важным элементом конструкции Я. з. является инициирующий заряд, создающий сверхкритические условия для делящегося вещества в атомном заряде и необходимую температуру в водородном заряде (в последнем случае в качестве инициирующего заряда применяется атомный заряд). При конструктивном оформлении Я. з. помещают в стальную оболочку, так что общая его масса вместе с инициирующими устройствами составляет обычно от нескольких сотен кг до нескольких т. При употреблении Я. з. в качестве ядерного оружия (См. Ядерное оружие) его для доставки к месту назначения помещают в авиационную бомбу, боевую головку ракеты, в торпеду и т. п.

Я. з. применялись в мирных целях для различных крупномасштабных взрывных работ, при добыче полезных ископаемых и т. д.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Ядерный заряд" в других словарях:

    Устройство, в котором осуществляется взрывной процесс освобождения ядерной энергии. Ядерный заряд входят в состав ядерных боеприпасов и делятся на атомные, энергия взрыва которых обусловлена цепной ядерной реакцией деления, и термоядерные… … Морской словарь

    Большой Энциклопедический словарь

    ЯДЕРНЫЙ ЗАРЯД - устройство, в котором осуществляется взрывной процесс освобождения ядерной энергии, входящее в состав ядерных боеприпасов (см. (2)). Я. з. делятся на атомные, энергия взрыва которых обусловлена цепной ядерной реакцией деления, и термоядерные… … Большая политехническая энциклопедия

    Устройство, в котором осуществляется взрывной процесс освобождения ядерной энергии. Ядерные заряды входят в состав ядерных боеприпасов и делятся на ядерные, энергия взрыва которых обусловлена ядерными цепными реакциями, и термоядерные (устаревшее … Энциклопедический словарь

    ЯДЕРНЫЙ ЗАРЯД Энциклопедия РВСН

    ЯДЕРНЫЙ ЗАРЯД - устройство для осуществления взрывного процесса освобождения внутриядер. энергии; осн. элемент ядер. боеприпасов. Различают Я.з., энергия взрыва к рых обусловлена цепной ядерной реакцией …

    Ядерный заряд - устройство, в котором осуществляется взрывной процесс освобождения ядерной энергии. Я з. входят в состав ядерных боеприпасов и делятся иа атомные, энергия взрыва которых обусловлена цепными ядерными реакциями деления, и термоядерные, энергия… … Словарь военных терминов

    Ядерный заряд - см. Ядерные боеприпасы … Энциклопедия РВСН

    Ядерный заряд - см. Ядерные боеприпасы … Военный энциклопедический словарь

    комбинированный ядерный заряд - mišrusis branduolinis užtaisas statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Termobranduolinis užtaisas, kuriame vyksta skilimo sintezės skilimo reakcijos. Mišriojo branduolinio užtaiso korpusas pagamintas iš plg. pigaus gamtinio… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.


1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число - на 4.


ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;


88 226Ra→2 4He + 86 222Ra + γ изл.


Альфа - распад подвергается более 10% радиоактивных изотопов.


2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов:


а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в , а ядро испускает и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.


АZ Х → АZ+1 У + е- + v-; 24194Pu→24195Am + e- + v-; 6429Cu → 6430Zn + e- + v-; 4019K → 4020Ca + e- + v-.


При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.


13785Cs → 13756 Ва + е -+ v- + γ изл.;


б) позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И.Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в , заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.


AZX → AZ-1У + е+ + v+; 3015P → 3014Si + e+ + v+; 6428Ni + e+ + v+.


Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон-электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - гамма-фотоны;


в) электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в . Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный , заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.


AZХ + е- → AZ-1 У + v- + рентгеновское излучение;


4019К + е- → Аr + v-+ рентгеновское излучение;


6429Сu + е- → 6428 Ni+v- + рентгеновское излучение.


Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 15957La, 17671Lu).


Некоторые ядра могут распадаться двумя или тремя способами: путем альфа- и бета-распада и К-захвата.


Калий-40 подвергается, как уже отмечалось, электронному распаду - 88%, и К-захвату - 12%. Медь-64 (6428Сu) превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).


3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета-распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.


13153I → 13154Xe + e- +v- +2γ кванта; 22688Ra → 42He + 22286Rn + γ квант.


4. - испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов:


лютеций - 151 (15171Lu) - в нем на 24 нейтрона меньше, чем в стабильном изотопе 17671Lu.

· Внутренняя конверсия · Изомерный переход

Ядерная реакция лития-6 с дейтерием 6 Li(d,α)α

Я́дерная реа́кция - процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами , гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии . Спонтанные (происходящие без воздействия налетающих частиц) процессы в ядрах - например, радиоактивный распад - обычно не относят к ядерным реакциям. Для осуществления реакции между двумя или несколькими частицами необходимо, чтобы взаимодействующие частицы (ядра) сблизились на расстояние порядка 10 −15 м, то есть характерного радиуса действия ядерных сил . Ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Реакции первого типа, экзотермические, служат основой ядерной энергетики и являются источником энергии звёзд

Реакции, идущие с поглощением энергии (эндотермические), могут происходить только при условии, что кинетическая энергия сталкивающихся частиц (в системе центра масс) выше определённой величины (порога реакции).

Запись ядерных реакций

Ядерные реакции записываются в виде специальных формул, в которых встречаются обозначения атомных ядер и элементарных частиц .

Первый способ написания формул ядерных реакций аналогичен записи формул реакций химических , то есть, слева записывается сумма исходных частиц, справа - сумма получившихся частиц (продуктов реакции), а между ними ставится стрелка.

Так, реакция радиационного захвата нейтрона ядром кадмия-113 записывается так:

В «химической» записи эта реакция выглядит, как

Каналы и сечения реакций

Типы и квантовое состояние частиц (ядер) до начала реакции определяют входной канал реакции. После завершения реакции совокупность образовавшихся продуктов реакции и их квантовых состояний определяет выходной канал реакции. Реакция полностью характеризуется входным и выходным каналами. Вероятность реакции определяется так называемым поперечным сечением реакции. В лабораторной системе отсчёта (где ядро-мишень покоится) вероятность взаимодействия в единицу времени равна произведению сечения (выраженного в единицах площади) на поток падающих частиц (выраженный в количестве частиц, пересекающих за единицу времени единичную площадку). Если для одного входного канала могут осуществляться несколько выходных каналов, то отношения вероятностей выходных каналов реакции равно отношению их сечений. В ядерной физике сечения реакций обычно выражаются в специальных единицах - барнах , равных 10 −24 с

Типы ядерных реакций

Существует несколько разновидностей ядерных реакций. Некоторые из них происходят на Земле в естественных условиях (например, под действием космических лучей и продуктов естественной радиоактивности), другие протекают в космосе (например, в недрах звёзд и Солнца), третьи - используются человеком для выработки электроэнергии , получения новых химических элементов и т. п. (см. ниже).

Реакции с нейтронами

Применение ядерных реакций

Военное

Энергетика

Синтез новых элементов

Медицина

Научные исследования

Перспективы

Ядерные реакции в природе

Солнце и звёзды

Недра Земли

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Ядерные реакции" в других словарях:

    Превращения ат. ядер при вз ствии с ч цами, в т. ч. с g квантами или друг с другом. Для осуществления Я. р. необходимо сближение ч ц (двух ядер, ядра и нуклона и т. д.) на расстояние 10 13 см. Энергия налетающих положительно заряж. ч ц должна… … Физическая энциклопедия

    ЯДЕРНЫЕ РЕАКЦИИ, превращения атомных ядер при взаимодействии с элементарными частицами, g квантами или друг с другом. Ядерные реакции используются в экспериментальной ядерной физике (исследование свойств элементарных частиц, получение… … Современная энциклопедия

Поделиться