Нервные электрические импульсы. Нервные импульсы — азбука мозга — имеют электрохимическую природу

Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5-10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5-10% длительности высоковольтного потенциала.


Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.

Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.

Через 2-3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.

В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении - от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.

Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.

Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.

В отличие от нервных волокон, в которых информация передается по принципу «все или ничего», т. е. дискретно, в синапсах информация передается по принципу «больше или меньше», т. е. градуально. Чем больше до некоторого предела образуется медиатора ацетилхолина, тем выше частота высоковольтных потенциалов в последующем нейроне. После этого предела возбуждение переходит в торможение. Таким образом, цифровая информация, передаваемая по нервным волокнам, переходит в синапсах в измерительную информацию. Измерительные электронные машины,

в которых имеются определенные соотношения между реально измеряемыми количествами и теми величинами, которые они представляют, называются аналоговыми, работающими по принципу «больше или меньше»; можно считать, что в синапсах происходит аналогичный процесс и совершается его переход в цифровой. Следовательно, нервная система функционирует по смешанному типу: в ней совершаются и цифровые и аналоговые процессы.

Содержание статьи

НЕРВНАЯ СИСТЕМА, сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию его жизнедеятельности благодаря способность реагировать на внешние и внутренние воздействия (стимулы). Основные функции нервной системы – получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем. У человека, как и у всех млекопитающих , нервная система включает три основных компонента: 1) нервные клетки (нейроны); 2) связанные с ними клетки глии, в частности клетки нейроглии, а также клетки, образующие неврилемму; 3) соединительная ткань . Нейроны обеспечивают проведение нервных импульсов; нейроглия выполняет опорные, защитные и трофические функции как в головном , так и в спинном мозгу, а неврилемма, состоящая преимущественно из специализированных, т.н. шванновских клеток, участвует в образовании оболочек волокон периферических нервов; соединительная ткань поддерживает и связывает воедино различные части нервной системы.

Нервную систему человека подразделяют по-разному. Анатомически она состоит из центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС включает головной и спинной мозг, а ПНС, обеспечивающая связь ЦНС с различными частями тела, – черепно-мозговые и спинномозговые нервы, а также нервные узлы (ганглии) и нервные сплетения, лежащие вне спинного и головного мозга.

Нейрон.

Структурно-функциональной единицей нервной системы является нервная клетка – нейрон. По оценкам, в нервной системе человека более 100 млрд. нейронов. Типичный нейрон состоит из тела (т.е. ядерной части) и отростков, одного обычно неветвящегося отростка, аксона, и нескольких ветвящихся – дендритов. По аксону импульсы идут от тела клетки к мышцам, железам или другим нейронам, тогда как по дендритам они поступают в тело клетки.

В нейроне, как и в других клетках, есть ядро и ряд мельчайших структур – органелл (см. также КЛЕТКА). К ним относятся эндоплазматический ретикулум, рибосомы, тельца Ниссля (тигроид), митохондрии, комплекс Гольджи, лизосомы, филаменты (нейрофиламенты и микротрубочки).

Нервный импульс.

Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом. В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).

Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.

Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.

При раздражении нейрона некоторые из натриевых (Na +) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.

Во многих нейронах деполяризация вызывает также открытие калиевых (K +) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na + из клетки, а K + внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.

Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.

Нервы, нервные волокна и ганглии.

Нерв – это пучок волокон, каждое из которых функционирует независимо от других. Волокна в нерве организованы в группы, окруженные специализированной соединительной тканью, в которой проходят сосуды, снабжающие нервные волокна питательными веществами и кислородом и удаляющие диоксид углерода и продукты распада. Нервные волокна, по которым импульсы распространяются от периферических рецепторов к ЦНС (афферентные), называют чувствительными или сенсорными. Волокна, передающие импульсы от ЦНС к мышцам или железам (эфферентные), называют двигательными или моторными. Большинство нервов смешанные и состоят как из чувствительных, так и из двигательных волокон. Ганглий (нервный узел) – это скопление тел нейронов в периферической нервной системе.

Волокна аксонов в ПНС окружены неврилеммой – оболочкой из шванновских клеток, которые располагаются вдоль аксона, как бусины на нити. Значительное число этих аксонов покрыто дополнительной оболочкой из миелина (белково-липидного комплекса); их называют миелинизированными (мякотными). Волокна же, окруженные клетками неврилеммы, но не покрытые миелиновой оболочкой, называют немиелинизированными (безмякотными). Миелинизированные волокна имеются только у позвоночных животных. Миелиновая оболочка формируется из плазматической мембраны шванновских клеток, которая накручивается на аксон, как моток ленты, образуя слой за слоем. Участок аксона, где две смежные шванновские клетки соприкасаются друг с другом, называется перехватом Ранвье. В ЦНС миелиновая оболочка нервных волокон образована особым типом глиальных клеток – олигодендроглией. Каждая из этих клеток формирует миелиновую оболочку сразу нескольких аксонов. Немиелинизированные волокна в ЦНС лишены оболочки из каких-либо специальных клеток.

Миелиновая оболочка ускоряет проведение нервных импульсов, которые «перескакивают» от одного перехвата Ранвье к другому, используя эту оболочку как связующий электрический кабель. Скорость проведения импульсов возрастает с утолщением миелиновой оболочки и колеблется от 2 м/с (по немиелинизированным волокнам) до 120 м/с (по волокнам, особенно богатым миелином). Для сравнения: скорость распространения электрического тока по металлическим проводам – от 300 до 3000 км/с.

Cинапс.

Каждый нейрон имеет специализированную связь с мышцами, железами или другими нейронами. Зона функционального контакта двух нейронов называется синапсом. Межнейронные синапсы образуются между различными частями двух нервных клеток: между аксоном и дендритом, между аксоном и телом клетки, между дендритом и дендритом, между аксоном и аксоном. Нейрон, посылающий импульс к синапсу, называют пресинаптическим; нейрон, получающий импульс, – постсинаптическим. Синаптическое пространство имеет форму щели. Нервный импульс, распространяющийся по мембране пресинаптического нейрона, достигает синапса и стимулирует высвобождение особого вещества – нейромедиатора – в узкую синаптическую щель. Молекулы нейромедиатора диффундируют через щель и связываются с рецепторами на мембране постсинаптического нейрона. Если нейромедиатор стимулирует постсинаптический нейрон, его действие называют возбуждающим, если подавляет – тормозным. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, – основной фактор, определяющий, будет ли этот постсинаптический нейрон генерировать нервный импульс в данный момент.

У ряда животных (например, у лангуста) между нейронами определенных нервов устанавливается особо тесная связь с формированием либо необычно узкого синапса, т.н. щелевого соединения, либо, если нейроны непосредственно контактируют друг с другом, плотного соединения. Нервные импульсы проходят через эти соединения не при участии нейромедиатора, а непосредственно, путем электрической передачи. Немногочисленные плотные соединения нейронов имеются и у млекопитающих, в том числе у человека.

Регенерация.

К моменту рождения человека все его нейроны и бóльшая часть межнейронных связей уже сформированы, и в дальнейшем образуются лишь единичные новые нейроны. Когда нейрон погибает, он не заменяется новым. Однако оставшиеся могут брать на себя функции утраченной клетки, образуя новые отростки, которые формируют синапсы с теми нейронами, мышцами или железами, с которыми был связан утраченный нейрон.

Перерезанные или поврежденные волокна нейронов ПНС, окруженные неврилеммой, могут регенерировать, если тело клетки осталось сохранным. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона. Аксоны в ЦНС, не окруженные неврилеммой, по-видимому, не способны вновь прорастать к месту прежнего окончания. Однако многие нейроны ЦНС могут давать новые короткие отростки – ответвления аксонов и дендритов, формирующие новые синапсы. См. также РЕГЕНЕРАЦИЯ .

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

ЦНС состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50–100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.

ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии.

Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.

Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов.

Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина – правой. Из этого общего правила, однако, есть несколько исключений.

Головной мозг

состоит из трех основных структур: больших полушарий, мозжечка и ствола.

Большие полушария – самая крупная часть мозга – содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.

Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.

Спинной мозг.

Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества – задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества – передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

ПНС обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. Анатомически ПНС представлена черепно-мозговыми (черепными) и спинномозговыми нервами, а также относительно автономной энтеральной нервной системой, локализованной в стенке кишечника.

Все черепно-мозговые нервы (12 пар) разделяют на двигательные, чувствительные либо смешанные. Двигательные нервы начинаются в двигательных ядрах ствола, образованных телами самих моторных нейронов, а чувствительные нервы формируются из волокон тех нейронов, тела которых лежат в ганглиях за пределами мозга.

От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковая. Их обозначают в соответствии с положением позвонков, прилежащих к межпозвоночным отверстиям, из которых выходят данные нервы. Каждый спинномозговой нерв имеет передний и задний корешки, которые, сливаясь, образуют сам нерв. Задний корешок содержит чувствительные волокна; он тесно связан со спинальным ганглием (ганглием заднего корешка), состоящим из тел нейронов, аксоны которых образуют эти волокна. Передний корешок состоит из двигательных волокон, образованных нейронами, клеточные тела которых лежат в спинном мозге.

Таблица: Черепно-мозговые нервы
ЧЕРЕПНО-МОЗГОВЫЕ НЕРВЫ
Номер Название Функциональная характеристика Иннервируемые структуры
I Обонятельный Специальный сенсорный (обоняние) Обонятельный эпителий полости носа
II Зрительный Специальный сенсорный (зрение) Палочки и колбочки сетчатки
III Глазодвигательный Моторный Большинство наружных мышц глаза
Гладкие мышцы радужной оболочки и хрусталика
IV Блоковый Моторный Верхняя косая мышца глаза
V Тройничный Общесенсорный
Моторный
Кожа лица, слизистая оболочка носа и рта
Жевательные мышцы
VI Отводящий Моторный Наружная прямая мышца глаза
VII Лицевой Моторный
Висцеромоторный
Специальный сенсорный
Мимическая мускулатура
Слюнные железы
Вкусовые рецепторы языка
VIII Преддверно-улитковый Специальный сенсорный
Вестибулярный (равновесие) Слуховой (слух)
Полукружные каналы и пятна (рецепторные участки) лабиринта
Слуховой орган в улитке (внутреннее ухо)
IX Языкоглоточный Моторный
Висцеромоторный
Висцеросенсорный
Мышцы задней стенки глотки
Слюнные железы
Рецепторы вкусовой и общей чувствительности в задней
части полости рта
X Блуждающий Моторный
Висцеромоторный

Висцеросенсорный

Общесенсорный

Мышцы гортани и глотки
Мышца сердца, гладкая мускулатура, железы легких,
бронхов, желудка и кишечника, в том числе пищеварительные железы
Рецепторы крупных кровеносных сосудов, легких, пищевода, желудка и кишечника
Наружное ухо
XI Добавочный Моторный Грудино-ключично-сосцевидная и трапециевидная мышцы
XII Подъязычный Моторный Мышцы языка
Определения «висцеромоторный», «висцеросенсорный» указывают на связь соответствующего нерва с внутренними (висцеральными) органами.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

Вегетативная, или автономная, нервная система регулирует деятельность непроизвольных мышц, сердечной мышцы и различных желез. Ее структуры расположены как в центральной нервной системе, так и в периферической. Деятельность вегетативной нервной системы направлена на поддержание гомеостаза, т.е. относительно стабильного состояния внутренней среды организма, например постоянной температуры тела или кровяного давления, соответствующего потребностям организма.

Сигналы от ЦНС поступают к рабочим (эффекторным) органам через пары последовательно соединенных нейронов. Тела нейронов первого уровня располагаются в ЦНС, а их аксоны оканчиваются в вегетативных ганглиях, лежащих за пределами ЦНС, и здесь образуют синапсы с телами нейронов второго уровня, аксоны которых непосредственно контактируют с эффекторными органами. Первые нейроны называют преганглионарными, вторые – постганглионарными.

В той части вегетативной нервной системы, которую называют симпатической, тела преганглионарных нейронов расположены в сером веществе грудного (торакального) и поясничного (люмбального) отделов спинного мозга. Поэтому симпатическую систему называют также торако-люмбальной. Аксоны ее преганглионарных нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных цепочкой вдоль позвоночника. Аксоны постганглионарных нейронов контактируют с эффекторными органами. Окончания постганглионарных волокон выделяют в качестве нейромедиатора норадреналин (вещество, близкое к адреналину), и потому симпатическая система определяется также как адренергическая.

Симпатическую систему дополняет парасимпатическая нервная система. Тела ее преганглинарных нейронов расположены в стволе мозга (интракраниально, т.е. внутри черепа) и крестцовом (сакральном) отделе спинного мозга. Поэтому парасимпатическую систему называют также кранио-сакральной. Аксоны преганглионарных парасимпатических нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных вблизи рабочих органов. Окончания постганглионарных парасимпатических волокон выделяют нейромедиатор ацетилхолин, на основании чего парасимпатическую систему называют также холинергической.

Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма.

Реакции симпатической системы сопровождаются расходом энергетических ресурсов, повышением частоты и силы сердечных сокращений, возрастания кровяного давления и содержания сахара в крови, а также усилением притока крови к скелетным мышцам за счет уменьшения ее притока к внутренним органам и коже. Все эти изменения характерны для реакции «испуга, бегства или борьбы». Парасимпатическая система, наоборот, уменьшает частоту и силу сердечных сокращений, снижает кровяное давление, стимулирует пищеварительную систему.

РЕФЛЕКСЫ

Когда на рецептор сенсорного нейрона воздействует адекватный стимул, в нем возникает залп импульсов, запускающих ответное действие, именуемое рефлекторным актом (рефлексом). Рефлексы лежат в основе большинства проявлений жизнедеятельности нашего организма. Рефлекторный акт осуществляет т.н. рефлекторная дуга; этим термином обозначают путь передачи нервных импульсов от точки исходной стимуляции на теле до органа, совершающего ответное действие.

Дуга рефлекса, вызывающего сокращение скелетной мышцы, состоит по меньшей мере из двух нейронов: чувствительного, тело которого расположено в ганглии, а аксон образует синапс с нейронами спинного мозга или ствола мозга, и двигательного (нижнего, или периферического, мотонейрона), тело которого находится в сером веществе, а аксон оканчивается двигательной концевой пластинкой на скелетных мышечных волокнах.

В рефлекторную дугу между чувствительным и двигательным нейронами может включаться и третий, промежуточный, нейрон, расположенный в сером веществе. Дуги многих рефлексов содержат два и более промежуточных нейрона.

Рефлекторные действия осуществляются непроизвольно, многие из них не осознаются. Коленный рефлекс, например, вызывается постукиванием по сухожилию четырехглавой мышцы в области колена. Это двухнейронный рефлекс, его рефлекторная дуга состоит из мышечных веретен (мышечных рецепторов), чувствительного нейрона, периферического двигательного нейрона и мышцы. Другой пример – рефлекторное отдергивание руки от горячего предмета: дуга этого рефлекса включает чувствительный нейрон, один или несколько промежуточных нейронов в сером веществе спинного мозга, периферический двигательный нейрон и мышцу.

Литература:

Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум и поведение . М., 1988
Физиология человека , под ред. Р.Шмидта, Г.Тевса, т. 1. М., 1996



Нервный импульс - электрический импульс или нет?

Имеются разные точки зрения: химическая и электрическая. Результаты гууглевания.


Дмитрий. Почему нервы не провода, а нервный импульс не ток. (4.09.2013)

ФИЗИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ:

НЕРВНЫЙ ИМПУЛЬС - волна возбуждения , к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электродами... Вдоль нервного волокна Нервный импусьс распространяется в виде волны электрич. потенциала. В синапсе происходит смена механизма распространения. Когда Н. и. достигает пресинаптич. окончания, в синаптич. щель выделяется активное хим. вещество - м е д и а т о р. Медиатор диффундирует через синаптич. щель и меняет проницаемость постсинаптич. мембраны, в результате чего на ней возникает потенциал , вновь генерирующий распространяющийся импульс . Так действует хим. синапс. Встречается также электрич. синапс, когда след . нейрон возбуждается электрически...Состояние покоя нервного волокна... стационарно благодаря действию ионных насосов , причём мембранный потенциал в условиях разомкнутой цепи определяется из равенства нулю полного электрич. тока...
Процесс нервного возбуждения развивается следующим образом (см. также Биофизика). Если пропустить через аксон слабый импульс тока, приводящий к деполяризации мембраны, то после снятия внеш. воздействия потенциал монотонно возвращается к исходному уровню. В этих условиях аксон ведёт себя как пассивная электрич. цепь, состоящая из конденсатора и пост. сопротивления.
Если импульс тока превышает нек-рую пороговую величину, потенциал продолжает изменяться и после выключения возмущения...

Мембрана нервного волокна представляет собой нелинейный ионный проводник , свойства к-рого существенно зависят от электрич. поля.

ИОННЫЕ НАСОСЫ молекулярные структуры, встроенные в биол. мембраны и осуществляющие перенос ионов в сторону более высокого электрохим. потенциала

СЕМЁНОВ С.Н. О ФОНОННОЙ ПРИРОДЕ НЕРВНОГО ИМПУЛЬСА С ПОЗИЦИЙ ДИНАМИКИ ЭВОЛЮЦИИ . (29.05.2013)
Семёнов С.Н. Фонон – квант биологической (клеточной) мембраны.

МОЛЕКУЛЯРНО-МЕХАНИЧЕСКАЯ МОДЕЛЬ СТРОЕНИЯ И ФУНКЦИОНИРОВАНИЯ БИОЛОГИЧЕСКИХ МЕМБРАН
ВВЕДЕНИЕ В КВАНТОВУЮ ФОНОННУЮ БИОЛОГИЮ МЕМБРАН.
С.Н. Семёнов , Дата публикации: 8 сентября 2003
Контакт с автором: [email protected]

Николаев Л.А. ′Металлы в живых организмах′ - Москва: Просвещение, 1986 - с.127
В научно-популярной форме автор рассказывает о роли металлов в биохимических процессах, протекающих в живых организмах. Книга будет способствовать расширению кругозора учащихся.
В распространении по нерву электрических импульсов принимают участие оба иона (натрия и калия).

Электрическая природа нервных импульсов и возбудимости нервной клетки.
Гальвани еще накануне XIX века экспериментально доказал, что между электричеством и функционированием мышц и нервов существует определенная связь.
Установление электрической природы возбуждения скелетной мышцы привело к практическому применению этого свойства в медицине. Во многом этому способствовал голландский физиолог Виллерн Эйнтховен. В 1903 году он создал особо чувствительный гальванометр, настолько чувствительный, что с его помощью можно было фиксировать изменения электрического потенциала сокращающейся сердечной мышцы. В течение трех последующих лет Эйнтховен записывал изменения потенциала сердца при его сокращении (эта запись называется электрокардиограммой) и сопоставлял особенности пиков и впадин с различными типами сердечных патологий.
Электрическую природу нервного импульса обнаружить было труднее, поначалу считали, что возникновение электрического тока и распространение его по нервному волокну обусловлены химическими изменениями в нервной клетке. Поводом для такого чисто спекулятивного суждения послужили результаты экспериментов немецкого физиолога XIX века Эмила Дю Буа-Раймона, который с помощью высокочувствительного гальванометра смог зарегистрировать в нерве при его стимуляции слабенький электрический ток.
По мере развития техники исследования электрической природы нервного импульса становились все более изящными. Помещая крошечные электроды (микроэлектроды) на различные участки нервного волокна, исследователи с помощью осциллоскопа научились регистрировать не только величину возникающего при возбуждении нерва электрического потенциала, но и его продолжительность, скорость распространения и прочие электрофизиологические параметры. За работы, проделанные в этой области, американские физиологи Джозеф Эрлангер и Герберт Спенсер Гессер в 1944 году были удостоены звания лауреатов Нобелевской премии в области медицины и физиологии.
Если на нервную клетку подавать электрические импульсы возрастающей силы, то вначале, пока сила импульса не достигнет определенной величины, клетка на эти импульсы реагировать не будет. Но как только сила импульса достигнет определенного значения, клетка внезапно возбудится и тут же возбуждение начнет распространяться по нервному волокну. Нервная клетка имеет определенный порог возбуждения, и на любой стимул, превышающий этот порог, она отвечает возбуждением только определенной интенсивности. Таким образом, возбудимость нервной клетки подчиняется закону «все или ничего», и во всех нервных клетках организма природа возбуждения одна и та же.

http://med-000.ru/kak-funkcioniruet-nerv/elektrich...

Ионная теория нервных импульсов, роль ионов калия и натрия в нервном возбуждении.

Возбуждение самой нервной клетки обусловлено движением ионов через клеточную мембрану. Обычно внутри клетки содержится избыток ионов калия, тогда как снаружи ее обнаруживается избыток ионов натрия. В покое клетка не выпускает из себя ионы калия и не впускает в себя ионы натрия, не давая сравняться концентрациям этих ионов по обе стороны мембраны. Градиент ионов клетка поддерживает при помощи работы натриевого насоса, который выкачивает ионы натрия наружу по мере их поступления внутрь клетки через мембрану. Различная концентрация ионов натрия по обе стороны клеточной мембраны создает на ней разность потенциалов величиной примерно в 1/10 вольта. При стимуляции клетки разность потенциалов падает, это и означает возбуждение клетки. Клетка не может реагировать на следующий стимул, пока разность потенциалов между наружной и внутренней сторонами мембраны не восстановится вновь. Этот период «отдыха» занимает несколько тысячных долей секунды, и называется он рефрактерным периодом.
После возбуждения клетки импульс начинает распространяться по нервному волокну. Распространение импульса - это серия последовательных возбуждений фрагментов нервного волокна, когда возбуждение предыдущего фрагмента вызывает возбуждение следующего, и так до самого окончания волокна. Распространение импульса происходит только в одном направлении, поскольку предыдущий фрагмент, который только что был возбужден, повторно возбудиться сразу же не может, так как находится в стадии «отдыха».
То, что возникновение и распространение нервного импульса обусловлено изменением ионной проницаемости мембраны нервной клетки, впервые доказали британские нейрофизиологи Алан Ллойд Ходжкин и Эндрю Филдинг Хаксли, а также австралийский исследователь Джон Кэрью Икклес.

8317 0

Нейроны

У высших животных нервные клетки образуют органы центральной нервной системы (ЦНС) - головной и спинной мозг — и периферической нервной системы (ПНС), которая включает в себя нервы и их отростки, соединяющие ЦНС с мышцами, железами и рецепторами.

Структура

Нервные клетки не воспроизводятся митозом (делением клеток). Нейроны называют амитотическими клетками - если они разрушены, они уже не восстановятся. Ганглии — это пучки нервных клеток вне ЦНС. Все нейроны состоят из перечисленных ниже элементов.

Тело клетки . Это ядро и цитоплазма.

Аксон. Это длинный, тонкий отросток, который передает информацию от тела клетки к другим кяеткам через соединения, называемые синапсами. Некоторые аксоны имеют длину меньше сантиметра, а другие — более 90 см. Большинство аксонов находятся в защитном веществе, называемом миелиновой оболочкой, которая помогает ускорить процесс передачи нервных импульсов. Сужения на аксоне через определенный промежуток называются перехватами Ранвье.

Дендриты. Это сеть коротких волокон, которые отходят от аксона или тела клетки и соединяют концы аксонов от других нейронов. Дендриты получают информацию для клетки, получая и проводя сигналы. У каждого нейрона могут быть сотни дендритов.

Структура нейрона

Функции

Нейроны контактируют друг с другом электрохимическим способом, передавая импульсы по всему телу.

Миелиновая оболочка

. Шванновские клетки обвивают спиралью один или более аксонов (а) , образуя миелиновую оболочку.
. Она состоит из нескольких слоев (возможно, 50-100) плазматических мембран (б) , между которыми циркулирует жидкая цитозоль (цитоплазма, лишенная ипохондрий и др. элементов эндоплазматической сети), за исключением самого верхнего слоя (в) .
. Миелиновая оболочка вокруг длинного аксона разделена на сегменты, каждый из которых образован отдельной Шванновской клеткой.
. Соседние сегменты разделены сужениями, называемым перехватами Ранвье (г) , где аксон не имеет миелиновой оболочки.

Нервные импульсы

У высших животных сигналы посылаются по всему телу и от головного мозга в виде электрических импульсов, передаваемых через нервы. Нервы создают импульсы, когда происходит физическое, химическое или электрическое изменение мембраны клетки.

1 Покоящийся нейрон

Покоящийся нейрон имеет отрицательный заряд внутри мембраны клетки (а) и позитивный заряд вне этой мембраны (б). Такое явление называется остаточным потенциалом мембраны.

Он поддерживается двумя факторами:

Различная проницаемость клеточной мембраны для ионов натрия и калия, у которых одинаковый положительный заряд. Натрий диффузирует (проходит) в клетку медленнее, чем калий выходит из нее.

Обмен натрий-калий, при котором из клетки выходит больше положительных ионов, чем входит в нее. В результате вне клеточной мембраны скапливается большая часть положительных ионов, чем внутри нее.

2 Стимулированный нейрон

Кода нейрон стимулируется, проницаемость какого-либо участка (в) клеточной мембраны изменяется. Положительные ионы натрия (г) начинают проникать в клетку быстрее, чем в покоящемся положении, что приводит к повышению положительного потенциала внутри клетки. Это явление называется деполяризацией.

3 Нервный импульс

Деполяризация постепенно распространяется на всю клеточную мембрану (д). Постепенно заряды по сторонам клеточной мембраны меняются (не некоторое время). Это явление называется обратной поляризацией. Это и есть, по сути, нервный импульс, передающийся вдоль клеточной мембраны нервной клетки.

4 Реполяризация

Проницаемость клеточной мембраны снова меняется. Положительные ионы натрия (Na+) начинают выходит из клетки (е). Наконец, вне клетки снова образуется положительный заряд, а внутри нее - положительный. Этот процесс называется реполяризацией.

НЕРВНЫЙ ИМПУЛЬС

НЕРВНЫЙ ИМПУЛЬС

Волна возбуждения, к-рая распространяется по нервному волокну и служит для передачи информации от периферич. рецепторных (чувствительных) окончаний к нервным центрам, внутри центр. нервной системы и от неё к исполнительным аппаратам - мышцам и железам. Прохождение Н. и. сопровождается переходными электрич. процессами, к-рые можно зарегистрировать как внеклеточными, так и внутриклеточными электродами.

Генерацию, передачу и переработку Н. и. осуществляет нервная система. Осн. структурным элементом нервной системы высших организмов является нервная клетка, или нейрон, состоящий из тела клетки и многочисл. отростков - дендритов (рис. 1). Один из отростков у нериферич. нейронов имеет большую длину - это нервное волокно, или аксон, протяжённость к-рого ~ 1 м, а толщина от 0,5 до 30 мкм. Различают два класса нервных волокон: мякотные (мие-линизированные) и безмякотные. У мякотных волокон имеется миелиновая , образованная спец. мембраной, к-рая подобно изоляции накручивается на аксон. Протяжённость участков сплошной миелиновой оболочки составляет от 200 мкм до 1 мм, они прерываются т. н. перехватами Ранвье шириной 1мкм. Миелиновая оболочка играет роль изоляции; нервное волокно на этих участках пассивно, электрически активна только в перехватах Ранвье. Безмякотные волокна не имеют изолир. участков; их структура однородна по всей длине, а мембрана обладает электрич. активностью по всей поверхности.

Нервные волокна заканчиваются на телах или ден-дритах др. нервных клеток, но отделены от них проме-

жутком шириной ~ 10 нм. Эта область контакта двух клеток наз. синапсом. Входящая в синапс мембрана аксона наз. пресинаптической, а соответствующая мембрана дендритов или мышцы - пост-синаптической (см. Клеточные структуры).

В нормальных условиях по нервному волокну постоянно бегут серии Н. и., возникающих на дендритах или теле клетки и распространяющихся по аксону в направлении от тела клетки (аксон может проводить Н. и. в обоих направлениях). Частота этих периодич. разрядов несёт информацию о силе вызвавшего их раздражения; напр., при умеренной активности частота ~ 50-100 импульсов/с. Существуют клетки, к-рые разряжаются с частотой ~ 1500 импульсов/с.

Скорость распространения Н. и. u. зависит от типа нервного волокна и его диаметра d, u. ~ d 1/2 . В тонких волокнах нервной системы человека u. ~ 1 м/с, а в толстых волокнах u. ~ 100-120 м/с.

Каждый Н. и. возникает в результате раздражения тела нервной клетки или нервного волокна. Н. и. всегда имеет одни и те же характеристики (форму и скорость) независимо от силы раздражения, т. е. при подпороговом раздражении Н. и. не возникает совсем, а при надпороговым - имеет полную амплитуду.

После возбуждения наступает рефракторный период, в течение к-рого возбудимость нервного волокна снижена. Различают абс. рефракторный период, когда волокно нельзя возбудить никакими раздражителями, и относит. рефракторный период, когда возможно, но его порог оказывается выше нормы. Абс. рефракторный период ограничивает сверху частоту передачи Н. и. Нервное волокно обладает свойством аккомодации, т. е. привыкает к постоянно действующему раздражению, что выражается в постепенном повышении порога возбудимости. Это приводит к снижению частоты Н. и. и даже к их полному исчезновению. Если раздражения нарастает медленно, то возбуждения может не произойти даже после достижения порога.

Рис.1. Схема строения нервной клетки.

Вдоль нервного волокна Н. и. распространяется в виде электрич. потенциала. В синапсе происходит смена механизма распространения. Когда Н. и. достигает пресинаптич. окончания, в синаптич. щель выделяется активное хим. - м е д и а т о р. Медиатор диффундирует через синаптич. щель и меняет проницаемость постсинаптич. мембраны, в результате чего на ней возникает , вновь генерирующий распространяющийся . Так действует хим. синапс. Встречается также электрич. синапс, когда . нейрон возбуждается электрически.

Возбуждение Н. и. Физ. представления о появлении электрич. потенциалов в клетках основаны на т. н. мембранной теории. Клеточные мембраны разделяют электролита разной концентрации и обладают из-бират. проницаемостью для нек-рых ионов. Так, мембрана аксона представляет собой тонкий слой липидов и белков толщиной ~ 7 нм. Её электрич. сопротивление в состоянии покоя ~ 0,1 Ом. м 2 , а ёмкость ~ 10 мф/м 2 . Внутри аксона высока ионов К + и мала концентрация ионов Na + и Сl - , а в окружающей среде - наоборот.

В состоянии покоя мембрана аксона проницаема для ионов К + . Из-за разницы концентраций C 0 K . во внеш. и С во внутр. растворах на мембране устанавливается калиевый мембранный потенциал


где Т - абс. темп-pa, е - заряд электрона. На мембране аксона действительно наблюдается потенциал покоя ~ -60 мВ, соответствующий указанной ф-ле.

Ионы Na + и Сl - проникают через мембрану. Для поддержания необходимого неравновесного распределения ионов клетка использует систему активного транспорта, на работу к-рой расходуется клеточная . Поэтому состояние покоя нервного волокна не является термодинамически равновесным. Оно стационарно благодаря действию ионных насосов, причём мембранный потенциал в условиях разомкнутой цепи определяется из равенства нулю полного электрич. тока.

Процесс нервного возбуждения развивается следующим образом (см. также Биофизика). Если пропустить через аксон слабый импульс тока, приводящий к деполяризации мембраны, то после снятия внеш. воздействия потенциал монотонно возвращается к исходному уровню. В этих условиях аксон ведёт себя как пассивная электрич. цепь, состоящая из конденсатора и пост. сопротивления.

Рис. 2. Развитие потенциала действия в нервном во локне: а - подпороговое (1 ) и надпороговое (2) раздражения; б -мембранный отклик; при над-пороговом раздражении проявляется полный потен циал действия; в - ионный ток, протекающий через мембрану при возбуждении; г - аппроксимация ионного тока в простой аналитической модели.


Если импульс тока превышает нек-рую пороговую величину, потенциал продолжает изменяться и после выключения возмущения; потенциал становится положительным и только потом возвращается к уровню покоя, причём вначале даже несколько проскакивает его (область гиперполяризации, рис. 2). Отклик мембраны при этом не зависит от возмущения; этот импульс наз. потенциалом действия. Одновременно через мембрану течёт ионный ток, направленный сначала внутрь, а потом наружу (рис. 2, в ).

Феноменологич. истолкование механизма возникновения Н. и. было дано А. Л. Ходжкином (A. L. Hodg-kin) и А. Ф. Хаксли (A. F. Huxley) в 1952. Полный ионный ток слагается из трёх составляющих: калиевого, натриевого и тока утечки. Когда потенциал мембраны сдвигается на пороговую величину j* (~ 20мВ), мембрана становится проницаемой для ионов Na + . Ионы Na + устремляются внутрь волокна, сдвигая мембранный потенциал, пока он не достигнет величины равновесного натриевого потенциала:


составляющего ~ 60 мВ. Поэтому полная амплитуда потенциала действия достигает ~ 120 мВ. К моменту достижения макс. потенциала в мембране начинает развиваться калиевая (и одновременно уменьшаться натриевая) . В результате натриевый ток сменяется на калиевый, направленный наружу. Этот ток соответствует уменьшению потенциала действия.

Установлены эмпирич. ур-ния для описания натриевого и калиевого токов. Поведение мембранного потенциала при пространственно однородном возбуждении волокна определяется ур-нием:

где С - ёмкость мембраны, I - ионный ток, слагающийся из калиевого, натриевого и тока утечки. Эти токи определяются пост. эдс j K , j Na и j l и проводимостями g K , g Na и g l:

Величину g l считают постоянной, проводимости g Na и g K описывают с помощью параметров m , h и п:

g Na , g K - постоянные; параметры т, h и п удовлетворяют линейным ур-ниям


Зависимость коэф. a. и b от мембранного потенциала j (рис. 3) выбирают из условия наилучшего совпадения


Рис. 3. Зависимость коэффициентов a . и b от мембран ного потенциала.

расчётных и измеряемых кривых I (t ). Этими же соображениями вызван выбор параметров. Зависимость стационарных значений т, h и п от мембранного потенциала приведена на рис. 4. Существуют модели с большим числом параметров. Т. о., мембрана нервного волокна представляет собой нелинейный ионный проводник, свойства к-рого существенно зависят от электрич. поля. Механизм генерации возбуждения изучен плохо. Ур-ния Ходжкина -Хаксли дают лишь удачное эмпирич. описание явления, за к-рым нет конкретной физ. модели. Поэтому важной задачей является изучение механизмов протекания электрич. тока через мембраны, в частности через управляемые элект- рич. полем ионные каналы.

Рис. 4. Зависимость стационарных значений т, h и п от мембранного потенциала.

Распространение Н. и. Н. и. может распространяться вдоль волокна без затухания и с пост. скоростью. Это связано с тем, что необходимая для передачи сигнала энергия не поступает из единого центра, а черпается на месте, в каждой точке волокна. В соответствии с двумя типами волокон существуют два способа передачи Н. и.: непрерывный и сальтаторный (скачкообразный), когда импульс движется от одного перехвата Ранвье к другому, перепрыгивая через области миелиновой изоляции.

В случае немиелинизир. волокна мембранного потенциала j(x, t )определяется ур-нием:

где С - ёмкость мембраны, приходящаяся на единицу длины волокна, R - сумма продольных (внутриклеточного и внеклеточного) сопротивлений на единицу длины волокна, I - ионный ток, протекающий через мембрану волокна единичной длины. Электрич. ток I является функционалом от потенциала j, к-рый зависит от времени t и координаты х. Эта зависимость определяется ур-ниями (2) -(4).

Вид функционала I специфичен для биологически возбудимой среды. Однако ур-ние (5), если отвлечься от вида I , имеет более общий характер и описывает многие физ. явления, напр. процесс горения. Поэтому передачу Н. и. уподобляют горению порохового шнура. Если в бегущем пламени процесс поджигания осуществляется за счёт теплопроводности, то в Н. и. возбуждение происходит при помощи т. н. локальных токов (рис. 5).


Рис. 5. Локальные токи, обеспечивающие распростра нение нервного импульса.

Ур-ния Ходжкина - Хаксли для распространения Н. и. решались численно. Полученные решения вместе с накопленными эксперим. данными показали, что распространение Н. и. не зависит от деталей процесса возбуждения. Качеств. картину распространения Н. и. можно получить при помощи простых моделей, отражающих лишь общие свойства возбуждения. Такой подход позволил рассчитывать и форму Н. и. в однородном волокне, их изменение при наличии неоднород-ностей и даже сложные режимы распространения возбуждения в активных средах, напр. в сердечной мышце. Существует неск. матем. моделей подобного рода. Простейшая из них такова. Ионный ток, протекающий через мембрану при прохождении Н. и., является знакопеременным: вначале он течёт внутрь волокна, а потом наружу. Поэтому его можно аппроксимировать кусочно-постоянной ф-цией (рис. 2, г ). Возбуждение происходит, когда мембранный потенциал сдвигается на пороговую величину j*. В этот момент возникает ток, направленный внутрь волокна и равный по модулю j". Спустя t" ток меняется на противоположный, равный j ". Эта продолжается в течение времени ~ t ". Автомодельное решение ур-ния (5) можно найти как ф-цию переменной t = х/ u, где u - скорость распространения Н. и. (рис. 2, б).

В реальных волокнах время t" достаточно велико, поэтому только оно определяет скорость u, для к-рой справедлива ф-ла: . Учитывая, что j " ~ ~d, R ~ d 2 и С ~ d, где d - диаметр волокна, находим в согласии с экспериментом, что u ~ d 1/2 . Спомощью кусочно-постоянной аппроксимации находят форму потенциала действия.

Ур-ние (5) для распространяющегося Н. и. в действительности допускает два решения. Второе решение оказывается неустойчивым; оно даёт Н. и. со значительно меньшей скоростью и амплитудой потенциала. Наличие второго, неустойчивого, решения имеет аналогию в теории горения. При распространении пламени с боковым теплоотводом также возможно возникновение неустойчивого режима. Простую аналитич. модель Н. и. можно усовершенствовать, учитывая дополнит. детали.

При изменении сечения и при ветвлении нервных волокон прохождение Н. и. может быть затруднено или даже полностью блокировано. В расширяющемся волокне (рис. 6) скорость импульса по мере приближения к расширению убывает, а после расширения начинает расти, пока не выйдет на новое стационарное значение. Замедление Н. и. тем сильнее, чем больше разница в сечениях. При достаточно большом расширении Н. и. останавливается. Существует критич. расширение волокна, к-рое задерживает Н. и.

При обратном движении Н. и. (из широкого волокна в узкое) блокирования не происходит, но изменение скорости носит противоположный характер. При подходе к сужению скорость Н. и. увеличивается, а затем начинает спадать до нового стационарного значения. На графике скорости (рис., 6 а ) получается своего рода петля гистерезиса.

Рие. 6. Прохождение нервных импульсов по расширя ющемуся волокну: а - изменение скорости импульса в зависимости от его направления; б -схематическое изображение расширяющегося волокна.


Другой тип неоднородности - ветвление волокон. В узле ветвления возможны разл. варианты прохождения и блокирования импульсов. При несинхронном подходе Н. и. условие блокирования зависит от временного сдвига. Если временной между импульсами мал, то они помогают друг другу проникнуть в широкое третье волокно. Если сдвиг достаточно велик, то Н. и. мешают друг другу. Связано это с тем, что Н. и., подошедший первым, но не сумевший возбудить третье волокно, частично переводит узел в рефракторное состояние. Кроме того, возникает эффект синхронизации: по мере приближения Н. и. к узлу их запаздывание друг относительно друга уменьшается.

Взаимодействие Н. и. Нервные волокна в организме объединены в пучки или нервные стволы, образующие подобие многожильного кабеля. Все волокна в пучке представляют собой самостоят. линии связи, но имеют один общий "провод" - межклеточную . Когда по любому из волокон бежит Н. и., он создаёт в межклеточной жидкости электрич. , к-рое влияет на мембранный потенциал соседних волокон. Обычно такое влияние пренебрежимо мало и линии связи работают без взаимных помех, но оно проявляется в пато-логич. и искусств. условиях. Обрабатывая нервные стволы спец. хим. веществами, удаётся наблюдать не только взаимные помехи, но и передачу возбуждения в соседние волокна.

Известны эксперименты по взаимодействию двух нервных волокон, помещённых в ограниченный объём внеш. раствора. Если по одному из волокон бежит Н. и., то одновременно изменяется возбудимость второго волокна. Изменение проходит три стадии. Вначале возбудимость второго волокна падает (повышается порог возбуждения). Это уменьшение возбудимости опережает потенциал действия, бегущий по первому волокну, и длится примерно до тех пор, пока потенциал в первом волокне не достигнет максимума. Затем возбудимость растёт, эта стадия совпадает по времени с процессом уменьшения потенциала в первом волокне. Возбудимость ещё раз уменьшается, когда в первом волокне происходит небольшая гиперполяризация мембраны.

При одноврем. прохождении Н. и. по двум волокнам иногда удавалось достигнуть их синхронизации. Несмотря на то что собств. скорости Н. и. в разных волокнах различны, при их одноврем. возбуждении мог возникнуть коллективный Н. и. Если собств. скорости были одинаковы, то коллективный импульс имел меньшую скорость. При заметном отличии собств. скоростей коллективная скорость имела промежуточное значение. Синхронизоваться могли лишь Н. и., скорости к-рых отличались не слишком сильно.

Матeм. описание этого явления даётся системой ур-ний для мембранных потенциалов двух параллельных волокон j 1 и j 2:


где R 1 и R 2 - продольные сопротивления первого и второго волокон, R 3 - продольное сопротивление внешней среды, g = R 1 R 2 + R 1 R 3 . + R 2 R 3 . Ионные токи I 1 и I 2 можно описать той или иной моделью нервного возбуждения.

При использовании простой аналитич. модели решение приводит к след. картине. Когда возбуждается одно волокно, в соседнем наводится знакопеременный мембранный потенциал: вначале волокно гиперполяри-зуется, затем деполяризуется и, наконец, ещё раз ги-перполяризуется. Эти три фазы соответствуют понижению, повышению и новому понижению возбудимости во-локна. При нормальных значениях параметров сдвиг мембранного потенциала во второй фазе в сторону деполяризации не достигает порога, поэтому передачи возбуждения в соседнее волокно не происходит. При одноврем. возбуждении двух волокон система (6) допускает совместное автомодельное решение, к-рое соответствует двум Н. и., движущимся с одинаковой скоростью на пост. расстоянии друг от друга. Если впереди находится медленный Н. и., то он притормаживает быстрый импульс, не выпуская его вперёд; оба движутся с относительно малой скоростью. Если же впереди находится быстрый II. и., то он подтягивает за собой медленный импульс. Коллективная скорость оказывается близкой к собств. скорости быстрого импульса. В сложных нейронных структурах возможно появление автоволи.

Возбудимые среды. Нервные клетки в организме объединены в нейронные сети, к-рые в зависимости от частоты ветвления волокон разделяют на редкие и густые. В редкой сети отд. возбуждаются независимо друг от друга и взаимодействуют только в узлах ветвления, как описано выше.

В густой сети возбуждение охватывает сразу много элементов, так что их детальная структура и способ соединения между собой оказываются несущественными. Сеть ведёт себя как непрерывная возбудимая среда, параметры к-рой определяют возникновение и распространение возбуждения.

Возбудимая среда может быть трёхмерной, хотя чаще её рассматривают как двумерную . Возбуждение, возникшее в к.-л. точке поверхности, распространяется во все стороны в виде кольцевой волны. Волна возбуждения может огибать препятствия, но не может от них отражаться, не отражается она и от границы среды. При столкновении волн между собой происходит их взаимное уничтожение; пройти друг сквозь друга эти волны не могут из-за наличия позади фронта возбуждения рефракторной области.

Примером возбудимой среды является сердечный нервно-мышечный синцитий - объединение нервных и мышечных волокон в единую проводящую систему, способную передавать возбуждение в любом направлении. Нервно-мышечные синцитии сокращаются синхронно, подчиняясь волне возбуждения, к-рую посылает единый управляющий центр - водитель ритма. Единый ритм иногда нарушается, возникают аритмии. Один из таких режимов наз. трепетанием предсердий: это автономные сокращения, вызванные циркуляцией возбуждения вокруг препятствия, напр. верхней или нижней вены. Для возникновения подобного режима периметр препятствия должен превышать длину волны возбуждения, равную в предсердии человека ~ 5 см. При трепетании происходит пе-риодич. сокращение предсердий с частотой 3-5 Гц. Более сложный режим возбуждения представляет собой фибрилляция желудочков сердца, когда отд. элементы сердечной мышцы начинают сокращаться без внеш. команды и без связи с соседними элементами с частотой ~ 10 Гц. Фибрилляция приводит к прекращению циркуляции крови.

Возникновение и поддержание спонтанной активности возбудимой среды неразрывно связаны с возникновением источников волн. Простейший источник волн ( спонтанно возбуждающихся клеток) может обеспечить периодич. пульсацию активности, так устроен водитель ритма сердца.

Источники возбуждения могут возникать и за счёт сложной пространств. организации режима возбуждения, напр. ревербератор типа вращающейся спиральной волны, появляющийся в простейшей возбудимой среде. Другой вид ревербератора возникает в среде, состоящей из элементов двух типов с разными порогами возбуждения; ревербератор периодически возбуждает то одни, то другие элементы, меняя при этом направление своего движения и порождая плоские волны.

Третий вид источника - ведущий центр (источник эха), к-рый появляется в среде, неоднородной по реф-ракторности или порогу возбуждения. В этом случае на неоднородности возникает отражённая волна (эхо). Наличие подобных источников волн приводит к появлению сложных режимов возбуждения, исследуемых в теории автоволн.

Лит.: Ходжкин А., Нервный импульс, пер. с англ., М., 1965; Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1968; Ходоров Б. И., Проблема возбудимости, Л., 1969; Тасаки И., Нервное возбуждение, пер. с англ., М., 1971; Маркин В. С., Пастушенко В. Ф., Чизмад-жев Ю. А., Теория возбудимых сред, М., 1981. В. С. Маркин.

НEРНСТА ТЕОРЕМА - то же, что Третье начало термодинамики.

НEРНСТА ЭФФЕКТ (продольный гальванотермомаг-нитный эффект) - появление в проводнике, по к-рому течёт ток j , находящемся в магн. поле H | j , градиента темп-ры Т , направленного вдоль тока j ; градиент темп-ры не меняет знак при изменении направления поля Н на обратное (чётный эффект). Открыт В. Г. Нерн-стом (W. Н. Nernst) в 1886. Н. э. возникает в результате того, что перенос тока (поток носителей заряда) сопровождается потоком тепла. Фактически Н. э. представляет собой Пельтъе эффект в условиях, когда возникающая на концах образца разность темп-р приводит к компенсации потока тепла, связанного с током j , потоком тепла за счёт теплопроводности. Н. э. наблюдается также и в отсутствие магн. поля.

НEРНСТА-ЭТТИНГСХАУЗЕНА ЭФФЕКТ - появление электрич. поля E нэ в проводнике, в к-ром есть градиент темп-ры Т , в направлении, перпендикулярном магн. полю Н . Различают поперечный и продольный эффекты.

Поперечный H.-Э. э. состоит в появлении электрич. поля Е нэ | (разности потенциалов V нэ | ) в направлении, перпендикулярном Н и Т . В отсутствие магн. поля термоэлектрич. поле компенсирует поток носителей заряда, создаваемый градиентом темп-ры, причём компенсация имеет место лишь для полного тока: электроны с энергией, большей средней (горячие), движутся от горячего конца образца к холодному, электроны с энергией, меньшей средней (холодные),- в противоположном направлении. Сила Лоренца, отклоняет эти группы носителей в направлении, перпендикулярном Т и магн. полю, в разные стороны; угол отклонения (угол Холла) определяется временем релаксации т данной группы носителей, т. е. различается для горячих и холодных носителей, если t зависит от энергии. При этом токи холодных и горячих носителей в поперечном направлении ( | Т и | Н ) не могут компенсировать друг друга. Это приводит к появлению поля Е | нэ , величина к-рого определяется из условия равенства 0 суммарного тока j = 0.

Величина поля Е | нэ зависит от Т, Н и свойств вещества, характеризующихся коэф. Нернста-Эттингсха-узена N | :


В полупроводниках под действием Т носители заряда разных знаков движутся в одну сторону, а в магн. поле отклоняются в противоположные стороны. В результате направление поля Нернста - Эттингсхаузена, создаваемого зарядами разного знака, не зависит от знака носителей. Это существенно отличает поперечный Н.-Э. э. от Холла эффекта, где направление поля Холла различно для зарядов разного знака.

Т. к. коэф. N | определяется зависимостью времени т релаксации носителей от их энергии , то Н.-Э. э. чувствителен к механизму рассеяния носителей заряда. Рассеяние носителей заряда уменьшает влияние магн. поля. Если t ~ , то при r > 0 горячие носители рассеиваются реже холодных и направление поля Е | нэ определяется направлением отклонения в магн. поле горячих носителей. При r < 0 направление Е | нэ противоположно и определяется холодными носителями.

В металлах, где ток переносится электронами с энергией в интервале ~ kT вблизи Ферми поверхности, величина N | задаётся производной д t. на Ферми-поверхности = const (обычно у металлов N | > 0, но, напр., у меди N | < 0).

Измерения Н.-Э. э. в полупроводниках позволяют определить r, т. е. восстановить ф-цию t(). Обычно при высоких темп-pax в области собств. проводимости полупроводника N | < 0 из-за рассеяния носителей на оп-тич. фононах. При понижении темп-ры возникает область с N | > 0, соответствующая примесной проводимости и рассеянием носителей гл. обр. на фононах (r < < 0). При ещё более низких Т доминирует рассеяние на ионизов. примесях с N | < 0 (r > 0).

В слабых магн. полях (w с t << 1, где w с - циклотронная частота носителей) N | не зависит от H . В сильных полях (w c t >> 1) коэф. N | пропорц. 1/H 2 . В анизотропных проводниках коэф. N | - тензор. На величину N | влияют увлечение электронов фотонами (увеличивает N | ), анизотропия Ферми-поверхности и др.

Продольный H. - Э. э. состоит в возникновении элект-рич. поля Е || нэ (разности потенциалов V || нэ) вдоль Т при наличии H | Т . Т. к. вдоль Т существует тер-моэлектрич. поле Е a = a Т , где a - коэф. термоэлек-трич. поля, то возникновение дополнит. поля вдоль Т равносильно изменению поля Е a . при наложении магн. поля:


Магн. поле, искривляя траектории электронов (см. выше), уменьшает их длину свободного пробега l в направлении T . Т. к. время свободного пробега (время релаксации t) зависит от энергии электронов , то уменьшение l неодинаково для горячих и холодных носителей: оно меньше для той группы, для к-рой т меньше. Т. о., магн. поле меняет роль быстрых и медленных носителей в переносе энергии, и термоэлектрич. поле, обеспечивающее отсутствие заряда при переносе энергии, должно измениться. При этом коэф. N || также зависит от механизма рассеяния носителей. Термоэлектрич. ток растёт, если т падает с ростом энергии носителей (при рассеянии носителей на аку-стич. фононах), или уменьшается, если т увеличивается с увеличением (при рассеянии на примесях). Если электроны с разными энергиями имеют одинаковое t, эффект исчезает (N || = 0). Поэтому в металлах, где диапазон энергий электронов, участвующих в процессах переноса, мал (~ kT), N || мало: В полупроводнике с двумя сортами носителей N || ~ ~ g/kT. При низких темп-pax N || может также возрастать из-за влияния увлечения электронов фононами. В сильных магн. полях полное термоэлектрич. поле в магн. поле "насыщается" и не зависит от механизма рассеяния носителей. В ферромагн. металлах Н.-Э. э. имеет особенности, связанные с наличием спонтанной намагниченности.

Волна возбуждения, распространяющаяся по нервному волокну и проявляющаяся в электрич. (потенциал действия), ионных, механич., термич. и др. изменениях. Обеспечивает передачу информации от периферич. рецепторных окончаний к нервным центрам внутри… … Биологический энциклопедический словарь

Нервный импульс - См. Потенциал действия. Психология. А Я. Словарь справочник / Пер. с англ. К. С. Ткаченко. М.: ФАИР ПРЕСС. Майк Кордуэлл. 2000 … Большая психологическая энциклопедия

Нервный импульс электрический импульс, распространяющийся по нервному волокну. При помощи передачи нервных импульсов происходит обмен информацией между нейронами и передача информации от нейронов к клеткам других тканей организма. Нервный… … Википедия

Волна возбуждения, распространяющаяся по нервному волокну, в ответ на раздражение нейронов. Обеспечивает передачу информации от рецепторов в центральную нервную систему и от неё к исполнительным органам (мышцам, железам). Проведение нервного… … Энциклопедический словарь

Нервный импульс - волна возбуждения, которая распространяется вдоль нервных волокон и по телу нервных клеток в ответ на раздражение нейронов и служит для передачи сигнала от рецепторов в центральную нервную систему, а от нее к исполнительным органам (мышцам,… … Начала современного естествознания

нервный импульс - nervinis impulsas statusas T sritis Kūno kultūra ir sportas apibrėžtis Jaudinimo banga, plintanti nerviniu audiniu. Atsiranda padirginus nervų ląsteles. Perduoda signalus iš jautriųjų periferinių nervų galūnių (receptorių) į centrinę nervų… … Sporto terminų žodynas

См. Импульс нервный … Большая советская энциклопедия

НЕРВНЫЙ ИМПУЛЬС - См. импульс (4) … Толковый словарь по психологии

Поделиться