Дорожники разработали новый тип перекрестка (Пока что не у нас). Транспортные развязки Турбинная развязка

В отличие от стандартных пересечений, транспортная развязка обеспечивает свободный поток транспортных средств, позволяя им миновать перекрёстки и светофоры. Но иногда развязки могут быть чрезвычайно сложными и состоять из нескольких уровней. Ниже представлен список, состоящий из десяти самых сложных дорожных развязок в мире.

South Bay Interchange - массивная транспортная развязка в Бостоне, штат Массачусетс, США. Была построена в конце 90-х годов в рамках проекта “Big Dig”.


A4 и E70 - сложный дорожно-транспортный узел, находящийся в Милане, Италия.


Восьмое место в списке десяти самых сложных дорожных развязок в мире занимает транспортная развязка Xinzhuang interchange, находящаяся в Шанхае, Китай.


На седьмой позиции находится Higashiosaka Loop - дорожно-транспортный узел, расположенный в городе Осаке, Япония.


Шестую строчку занимает Interchange of I-695 and I-95 - сложная транспортная развязка, находящаяся в округе Балтимор, штат Мэриленд, США.


Kennedy Interchange - дорожно-транспортный узел, расположенный на северо-восточной окраине города Луисвилл, штат Кентукки, США. Его строительство началось весной 1962 года, и было закончено в 1964.


Judge Harry Pregerson Interchange - транспортный узел в Лос-Анджелесе, штат Калифорния, США. Был открыт в 1993 году и назван в честь федерального судьи Гарри Прегерсона.


Tom Moreland Interchange - транспортная развязка, находящаяся на северо-востоке от Атланты, штат Джорджия, США. Была построена между 1983 и 1987 годами и названа в честь Тома Морленда, одного из ведущих специалистов дорожно-строительных работ в США. В настоящее время узел обслуживает около 300 000 автомобилей в день.


Gravelly Hill Interchange - сложная дорожная развязка в Бирмингеме, Англия, более известная под прозвищем Spaghetti Junction. Была открыта 24 мая 1972 года. Она охватывает 12 га и включает в себя 4 км соединительных дорог.


Puxi Viaduct - большой, шести уровневый дорожно-транспортный узел, расположенный в историческом центре Шанхая, Китай.

  • 8. Основы теории проектирования трассы автомобильной дороги (уравнение движения автомобиля).
  • 9. Особенности проектирования переходных кривых на транспортных развязках.
  • 10. Расчетные схемы (формулы) определения расстояний видимости в плане и профили.
  • 11. Основные принципы ландшафтного проектирования автодорог.
  • 12. Ровность проезжей части - факторы влияющие на ровность и показатели «страдающие» от ровности.
  • 13. Колейность на покрытиях и методы ее предотвращения и ликвидации.
  • 14. Состав проекта автомобильной дороги, документы, степень детализации.
  • 15. Автоматизированные системы управления дорожным движением в современных условиях.
  • 16. Локальные очистные сооружения - виды, конструкции, принципы работы.
  • 17. Защита от транспортного и технологического шума в зоне трассы автодороги.
  • 18. Метеорологическое обеспечение безопасности дорожного движения.
  • 1.Мероприятия, предусматриваемые в проектах дорог
  • 2. Мероприятия, осуществляемые дорожной службой в процессе эксплуатации
  • 19. Принципы дорожно-климатического районирования (зонирования) территории рф.
  • 20. Современные системы автоматизированного проектирования дорог: credo, robur.
  • 21. Состав работ по инженерным изысканиям под новое строительство и реконструкцию автодорог.
  • 22. Современные геоинформационные технологии применяемые в дорожном строительстве.
  • 23. Особенности инженерных изысканий на мостовых переходах (состав работ, оборудование, документы).
  • 24. Мероприятия по обеспечению устойчивости земляного полотна на неустойчивых склонах (оползни, осыпи, обвалы...)
  • 25. Вертикальная планировка городских территорий, улиц, перекрестков: методы, представляемые документы.
  • 27. Теоретическая пропускная способность 1 полосы движения.
  • 28. Водно-тепловой режим земляного полотна - процессы в годовом цикле.
  • 29. Пересечения и примыкания автомобильных дорог в одном уровне: планировочные решения, требования безопасности движения.
  • 30. Комплексы по обслуживанию дорожного движения в современных условиях.
  • 31. Особенности конструкций земляного полотна в 1-й дорожно-климатической зоне. Наледи на дорогах и в малых искусственных сооружениях.
  • 32. Производственные предприятия дорожного строительства: карьеры, абз, цбз, базы инертных материалов.
  • 33. Методика определения перспективной интенсивности движения при назначении категории дороги (загородной и городской).
  • 34. Типы дорожных одежд и виды покрытий по капитальности.
  • 35. Назначение виража, методика проектирования отгона виража.
  • 37. Классификация дорожных одежд. Конструирование одежд разных типов. Конструктивные слои дорожной одежды, их назначение.
  • 38. Расчет дорожных одежд нежесткого типа на прочность.
  • 39. Расчет дорожных одежд на морозоустойчивость. Мероприятия по обеспечению морозоустойчивости.
  • 40. Расчет жестких дорожных одежд.
  • 1. Расчет дорожной одежды на морозоустойчивость
  • 2. Расчёт бетонной плиты на прочность
  • 3. Расчет температурных напряжений в бетонных плитах
  • 41. Схемы транспортных развязок в разных уровнях.
  • 42. Проектирование съездов для правых и левых поворотов (нормы и техусловия).
  • 43. Мероприятия по обеспечению устойчивости земляного полотна.
  • 44. Методика гидрологических расчетов для назначения расчетного расхода при проектировании мостовых переходов.
  • 45. Назначение отверстий больших и средних мостов. Расчет общего и местного размывов. Проектирование подходов к мостам и регуляционных сооружений.
  • 46. Назначение и функциональная роль геосинтетических материалов в конструкциях дорожных одежд, разновидности и область применения.
  • 47. Характеристика битумов, применяемых в дорожном строительстве. Методы улучшения свойств битумов.
  • 48. Асфальтобетон. Классификация, св-ва, требования, определение физико-механических показателей, применение в дорожном строительстве. Применение щма, литого а/б. Компакт-асфальт.
  • 49. Устройство оснований из грунтов, укрепленных минеральными и органическими вяжущими материалами.
  • 50. Технология приготовления горячего асфальтобетона.
  • 51. Основные способы активации битумов. Контроль и оценка качества асфальтобетонных смесей.
  • 52. Технологический (операционный) контроль и приемка асфальтобетонных покрытий. Требования нормативов по допускам.
  • 53. Методы повышения производительности землеройных машин.
  • 54. Организация и технология выторфовывания грунтов экскаваторами.
  • 55. Особенности движения на городских дорогах, их конструктивные отличия от автомобильных (загородных) дорог.
  • 56. Природные каменные материалы и отходы промышленности, направления, и обоснование целесообразности их использования в дорожном строительстве.
  • 57. Сборные покрытия дорог, современные конструктивные решения и технология укладки.
  • 58. Технология изготовления бетонных изделий на заводах жби.
  • 59. Состав и разработка бизнес-плана строительной организации.
  • 60. Методы организации дорожного строительства. Оптимизация моделей организации работ.
  • 61. Технологии устройства земляного полотна на болотах.
  • 62. Методы оценки транспортно-эксплуатационного состояния автомобильных и городских дорог.
  • 63. Методы организации дорожного движения.
  • 64. Технические средства организации дорожного движения.
  • 65. Методы оценки и прогнозирования сроков службы дорожных одежд нежесткого типа на основе теории риска.
  • 66. Способы борьбы с зимней скользкостью и снегозаносимостью при содержании автомобильных и городских дорог.
  • 67. Основные требования к транспортно-эксплуатационным показателям дорожных покрытий.
  • 68. Методы оценки прочности дорожных одежд. Основные виды и причины возникновения деформаций и разрушений дорожных одежд.
  • 69. Влияние технологических факторов строительства дорог и движения транспорта на природную среду.
  • 70. Основы теории и способы уплотнения грунтов, контроль при уплотнении.
  • 3.Метод режущего кольца
  • 4.Плотномер-влагомер Ковалёва
  • 71. Устройство брусчатых мозаиковых, клинкерных и блочных мостовых, конструктивные решения и технология.
  • 72. Руководящие документы, нормы и правила по охране окружающей среды.
  • 73. Методы управления дорожным движением на автомобильных и городских дорогах в современных условиях.
  • 74. Автоматическое регулирование уличного движения на магистралях города.
  • 75. Способы повышения шероховатости, cцепных качеств а/б покрытий.
  • 76. Классификация работ при реконструкции и ремонте дорог.
  • 77. Пропускная способность существующих дорог и мероприятия по ее повышению.
  • 78. Способы уширения земляного полотна при реконструкции дорог.
  • 79. Реконструкция дорожных одежд. Регенерация асфальтобетонных покрытий. Особенности технологии и организации работ при реконструкции дорог.
  • 80. Теоретические основы влагонакопления в земляном полотне и дорожной одежде.
  • 81. Методы и модели организации строительства автомобильных дорог.
  • 82. Принципы, методы, системы, функции и структуры управления дорожным строительством.
  • 83. Расчеты эффективности затрат производства, дисконтированная стоимость.
  • 84. Менеджмент качества. Международные стандарты исо серии 9000 по качеству. Эффективность повышения качества.
  • 85. Контроль качества (виды, методы, средства), оценка качества.
  • 87. Конструкции и технология устройства цементобетонных покрытий. Строительство предварительно напряженных покрытий.
  • 86. Техническое нормирование и нормы в дорожном хозяйстве; методы технического нормирования, методика разработки производственных норм.
  • 88. Устройство покрытий из полимербетонов и бетонополимеров.
  • ПЕРЕСЕЧЕНИЯ

    1)Клеверный лист(рис.1) - наиболее широко применяемая схема. Прим.при пересеч. 2-х автомагистралей между собой или при пересеч.автомагистр.с дорогами более низких катег. Преимущества:

    Возможность проетирования правоповоротн.съездов с кривыми бОльшего радиуса при небольш.продол.уклонах,что позволяет повысить скорость движ.; - наличие только одного путепровода.

    2)Неполный клеверный лист примен.: - когда отдельные сворачивающие потоки имеют невысок.интенсивность=>проектирование самостоят.съездов не экономично; - с целью экономии отвода земли вблизи н.п.; - когда дорога имеет к-либо препятствие. Недостат.: наличие точек пересеч.в одном уровне, закругления малых радиусов треб.значительного снижения скоростей.

    а) с 4-мя однопутными съездами(рис.2); б) с 2-мя двупутными съездами, нарполож.в соседн.четвертях(рис.3); в) с 2-мя двупутными, располож.в накрестлежащих четвертях(рис.4).

    1. 2.

    3.
    4.

    5. 6.7.8.

    Распределительное кольцо а) с 5-ю путепровод. (рис.5). Для размещения подъемов и спусков необх.большой радиус кольца, кот.требует большой площади отвода земель. Левоповоротные автомобили совершают большой перепробег. Имеет простую конфигурацию, просты для ориентирования; б) с 2-мя путепроводами. Меньше путепроводов=>меньшая стоимость строительства; в) улучшенный тип кольца. Сложная конфигурация, не экономичная; г) турбинный тип пересечения.Не экономичный

    а) ромбовидный тип. Сожная конструкция(9 путепроводов); б) криволинейный треугольник(16 путепроводов);в) Н-образный тип(9 путепров.).

    У всех большая стоимость строит.

    ПРИМЫКАНИЯ

    ТР, имеющие в основе элем-ты клеверного листа:

    а) по типу «труба»(рис.6). Основная схема примыкания второстепенной дороги к главной, является компактной и не треб. отчуждения большой площади земель. Нет точек пересеч.в одном уровне, простая конфигурация.; б) листовидный тип(рис.7). бОльшая безопасность, смешение различных поворачивающих потоков отсутствуют, простая конфигурация; в) по типу неполного клеверного листа;

    ТР, имеющие в основе элем-ты кольца:

    а) кольцевой тип(рис.8); б) грушевидный; в) грибообразный

    ТР с параллельн.расположением правоповорот.и левоповорот.съездов:

    а) Т-образный тип; б) по типу треугольника

    42. Проектирование съездов для правых и левых поворотов (нормы и техусловия).

    Правоповоротный съезд – движение по нему осуществляется поворотом на право.

    Левоповоротный съезд:

    1)непрямой («клеверный лист»)

    2) полупрямой (сначала поворот направо, потом налево);

    Правоповоротные съезды на развязках выполняют в виде сочетания переходных кривых, а также прямых вставок. Левоповоротные съезды, как правило, по форме приближают к окружности. Радиусы кривых определяются из условия обеспечения расчётной скорости на съездах. Для правоповоротных это 60 км/ч (для III-ей кат.) и 80 км/ч (для I и II кат.), соответствующие минимальные радиусы 125 и 250 м. Для левоповоротных это 40 км/ч (для III-ей кат.) и 50 км/ч (для I и II кат.), соответствующие линии радиусы 50 и 80 м.

    Значения поперечного уклона виражей на съездах в районах с редкими случаями образования гололеда принимают равными:

    Для петель левоповоротных съездов пересечений “клеверный лист” 60 % о;

    Для правоповоротных съездов, рассчитанных на скорости 60-90 км/ч, 30 % о, на скорости 40-50 км/ч - 60 % о;

    Для прямых, полупрямых и кольцевых левоповоротных съездов 30 % о;

    Для других видов съездов, рассчитанных на скорости 40-50 км/ч, 60 % о.

    Поперечный уклон на обочинах съездов, укрепленных каменными материалами, принимают 50(60 % о, при асфальтобетонных обочинах 30-40 % о.

    Ширина проезжей части на однополосных съездах транспортных развязок составляет:

    для петель левоповоротных съездов развязок типа “клеверный лист” 5,5 м;

    Для правоповоротных съездов, рассчитанных на скорости 60-90 км/ч, 5 м, на скорости 40-50 км/ч - 4,5 м;

    Для прямых и полупрямых левоповоротных съездов с радиусом более 100 м - 5,0 м.

    Ширина обочин с внутренней стороны кривых – 1,5 м., с внешней – 3,0 м.

    При устройстве съездов с несколькими полосами движения ширину проезжей части назначают исходя из рекомендаций по определению ширины полос движения на закруглениях автомобильных дорог.

    Для более уверенного управления автомобилем и лучшего зрительного восприятия водителем кромок полосы движения на проезжей части съездов целесообразно устраивать краевые полосы, отличающиеся по цвету от основного покрытия, шириной 0,5 м для скоростей 40(50 км/ч и 0,75 м для более высоких скоростей движения.

    "
  • Согласно СП 34.13330.2012 пересечения и примыкания в разных уровнях (транспортные развязки) надлежит принимать в следующих случаях:

    • – на дорогах IA и 1Б категорий – с автомобильными дорогами всех категорий;
    • – IВ категории – с дорогами, расчетная интенсивность движения на которых превышает 1000 авт./сут;
    • – IB категории с числом полос движения шесть и более – с автомобильными дорогами всех категорий;
    • – II и III категорий – между собой при суммарной расчетной интенсивности движения более 12000 авт./сут.

    Пересечения и примыкания дорог в плане располагают на прямых участках или на кривых с радиусами не менее 2000 м на дорогах IA, 1Б, № и II категорий и с радиусами не менее 800 м – на дорогах III и IV категорий.

    Пересечения и примыкания на дорогах IA категории вне пределов населенных пунктов предусматривают не чаще чем через 10 км, на дорогах 1Б и II категорий – 5 км, а на дорогах III категории – 2 км с учетом конкретных условий (застройка, начертание существующей сети дорог и т.д.).

    Транспортные развязки на автомобильных дорогах в разных уровнях классифицируются по начертанию в плане и способам организации движения на них .

    По начертанию в плане транспортные развязки можно разделить на следующие группы:

    • – клеверообразные;
    • – кольцевые;
    • – крестообразные;
    • – сложные пересечения с полупрямыми и прямыми левоповоротными съездами;
    • – примыкания.

    По способу организации левого поворота (рис. 5.19):

    • – непрямые;
    • – по кольцу;
    • – полупрямые;
    • – прямые.

    В практике отечественного проектирования наибольшее распространение получили клеверообразные пересечения автомобильных дорог с непрямыми левыми поворотами (рис. 5.20).

    При этом различают развязки типа:

    • – полный клеверный лист, обеспечивающий полную развязку движения по всем направлениям (рис. 5.20, а);
    • – обжатый клеверный лист, устраиваемый в стесненных условиях городской застройки (рис. 5.20, б).

    Рис. 5.19.

    а – непрямые; б – по кольцу; в – полупрямые; г – прямые.

    Рис. 5.20.

    а – с восемью однопутными сьездами; б – с четырьмя двухпутными съездами

    При пересечении по типу клеверного листа в центре устраивают путепровод. Пересекающиеся дороги соединяют между собой съездами – однопутными или двухпутными (см. рис. 5.20).

    В первом случае число съездов равно восьми. При этом четыре съезда служат для поворотов вправо и четыре – влево. Съезды, служащие для поворотов влево, напоминают листья клевера – отсюда и название транспортной развязки.

    Во втором случае число съездов равно четырем, при этом каждый съезд служит для поворота как направо, так и налево.

    Предпочтение следует отдавать клеверному листу с восемью однопутными съездами, а не с четырьмя двухпутными, так как на каждом двухпутном съезде имеется встречное движение, что снижает безопасность движения по транспортной развязке.

    При пересечении дороги I категории с дорогами более низких категорий (III–V), а также на дорогах II–IV категорий применяют пересечения по типу неполного клеверного листа, допускающие пересечения в одном уровне левоповоротных транспортных потоков на второстепенных направлениях (рис. 5.21).

    Рис. 5.21.

    а – неполный клеверный лист с четырьмя однопутными съездами; 6 – с двумя двухпутными съездами, расположенными в соседних четвертях; в – то же в накрест лежащих четвертях; г – неполный клеверный лист на берегу реки

    Возможны следующие разновидности неполного клеверного листа:

    • – с четырьмя однопутными съездами (рис. 5.21, а);
    • – двумя двухпутными съездами, расположенными в соседних четвертях (рис. 5.21, б);
    • – двумя двухпутными съездами, расположенными в накрест лежащих четвертях (рис. 5.21, в);
    • – в условиях плотной застройки в целях экономии площадей, отводимых под развязку, при расположении развязки параллельно реке, автомобильной или железной дороге (рис. 5.21, г).

    Все съезды клеверного листа вливаются в проезжие части пересекающихся дорог с правой стороны, что находится в полном соответствии с основным принципом проектирования автомагистралей, согласно которому ответвления и присоединения дорог на автомагистралях должны устраиваться с правой стороны (по ходу движения).

    К достоинствам полных клеверных пересечений относят обеспечение развязки движения транспортных потоков по всем направлениям без пересечения потоков при двух пересекающихся магистралях.

    Стоимость строительства развязок типа клеверного листа невысока, поскольку они имеют один путепровод. Однако клеверообразным узлам пересечений автомобильных дорог присущи и недостатки, ограничивающие сферу их применения:

    • – большая площадь, занимаемая развязкой;
    • – повороты налево автомобили совершают с малыми скоростями (не более 50 км/ч) со значительными перепробегами (до 0,5-0,9 км), при этом увеличивается время проезда узла;
    • – вследствие значительной длины съездов относительно высокими оказываются объемы и стоимости земляных работ и дорожной одежды;
    • – необходимость дополнительных мероприятий для обеспечения безопасного движения пешеходов.

    Следует отметить, что автомобили, съезжающие с одной из пересекающихся дорог по левоповоротному съезду № 1, не могут свободно и беспрепятственно включаться в поток движения на другой дороге, так как они встречаются с автомобилями, направляющимися на соседний левоповоротный съезд № 2 (рис. 5.22). По мере увеличения интенсивности движения на петле левоповоротного съезда № 1 увеличивается количество автомобилей на межпетлевом участке 1мп. В результате скорость движения на нем не превышает 50–60 км/ч.

    Рис. 5.22. :

    1 – дорога; 2 – левоповоротный съезд № 1; 3 – левоповоротный съезд № 2;

    V 1 – скорость на основной дороге; Vих – скорость на входе на съезд № 2

    На клеверном листе имеется четыре узких места, называемых горловинами. Наличие их приводит к снижению пропускной способности левоповоротных съездов и увеличению дорожно-транспортных происшествий. В результате этого применение клеверного листа оказывается целесообразным только в тех случаях, когда интенсивность левоповоротного движения сравнительно небольшая.

    На автомагистралях при наличии одного или нескольких мощных левоповоротных транспортных потоков, когда строительство обычного петлевого (непрямого) съезда вызывает неоправданные потери, связанные с перепробегом автомобилей, сокращение или исключение перепробегов достигается путем устройства полупрямых или прямых левоповоротных съездов.

    При применении полупрямых левоповоротных съездов (рис. 5.23, а и 6) автомобиль проходит значительно меньший путь, чем при непрямых поворотах и совершает сначала поворот вправо, а затем влево.

    На развязке (рис. 5.23, а) движение потока на полупрямой левоповоротном съезде ВС происходит частично за пределами развязки с большей скоростью, чем на петлевых съездах, так как радиус кривой значительно больше. Недостатком этого типа съезда является наличие на нем двух коротких обратных круговых кривых малого радиуса.

    На рис. 5.23, б движение левоповоротного потока ВС осуществляется в пределах развязки. Этот вариант предпочтительней предыдущего, так как на съезде отсутствуют короткие обратные кривые малых радиусов.

    Левоповоротное движение (рис. 5.23, в) производится непосредственно влево. Поворот осуществляется по кратчайшему направлению с высокой скоростью, как на правых поворотах. Однако для осуществления прямого левого поворота пересекающиеся дороги должны разветвиться на две части, что приводит к необходимости движения прямых потоков по кривым.

    Рис. 5.23.

    а – с одним полупрямым левоповоротным съездом ВС. б – с одним прямым левоповоротным съездом ВС. в – с двумя прямыми левоповоротными съездами ВС и СВ

    Полупрямые и прямые левоповоротные съезды встречаются более чем на 50% схем транспортных развязок и позволяют увеличить скорость движения на этих съездах до 80 км/ч.

    Достигаемое при применении полупрямых и прямых левоповоротных съездов уменьшение перепробегов транспорта приводит к существенному увеличению строительной стоимости транспортной развязки в связи с необходимостью строительства для каждого левоповоротного направления двух путепроводов.

    Кольцевые пересечения автомобильных дорог характеризуются наибольшей простотой организации движения, однако требуют строительства от двух до семи путепроводов, а также большой площади отчуждения земель.

    Распределительное кольцо с пятью путепроводами (рис. 5.24) возможно при пересечениях дорог I и II категорий с большой интенсивностью движения и значительным удельным весом поворачивающих налево автомобилей.

    !!!

    Рис. 5.24.

    Кольцо с двумя путепроводами (рис. 5.25, а и б) применяется при пересечении дорог высокой категории (I–II) с дорогами низкой категории (III–V), при этом прямые потоки на второстепенной дороге движутся по кольцу. В стесненных условиях устраивают вариант "вытянутое кольцо" (рис. 5.25, б).

    Рис. 5.25.

    а – обычное; б – вытянутое в стесненных условиях

    На улучшенном типе распределительного кольца левоповоротное движение направляется на кольцо не по правоповоротным съездам, а по специальным левоповоротным съездам, расположенным внутри кольца (рис. 5.26, а).

    Рис. 5.26.

    а – улучшенное; б – турбинное

    Переход левоповоротного движения с кольца на основную дорогу происходит по правоповоротным съездам. Недостаток этого типа пересечения – наличие на левоповоротных съездах коротких обратных кривых малого радиуса.

    В турбинном типе пересечения (рис. 5.26, б) левоповоротные потоки также направляются по специальным спиральным съездам – подобно тому, как происходит протекание воды через турбину, отсюда и название транспортной развязки. На этой развязке четыре левоповоротных потока имеют собственный съезд с дополнительными двумя косыми путепроводами, который вливается в соответствующие правоповоротные съезды. На кольце левоповоротные потоки не смешиваются с правоповоротными потоками, как на развязке типа распределительного кольца. Однако смешение потоков наблюдается на участках правоповоротных съездов. Турбинный тип пересечения имеет семь путепроводов.

    Улучшенный и турбинный типы пересечения имеют более высокую строительную стоимость по сравнению с обычным типом распределительного кольца.

    Если при пересечении автомобильных дорог в разных уровнях имеется один или два мощных левоповоротных потока, то целесообразно для этих потоков создать лучшие условия по сравнению с остальными, т.е. устроить для них полупрямые и прямые левоповоротные съезды (рис. 5.27).

    На рис. 5.27, а приведена схема развязки по типу расширенного распределительного кольца с одним полупрямым левоповоротным съездом, расположенным за пределами кольца. На развязке семь путепроводов, причем два из них – косые (для осуществления левого поворота).

    Грушевидный тип развязки, получаемый комбинацией элементов клеверного листа и турбинного типа пересечения, показан на рис. 5.27, б. Условия движения на левых поворотах по направлениям ВС и DB значительно лучше, чем на поворотах по направлениям AD и С А. Развязка имеет всего четыре путепровода, один из которых является косым.

    На рис. 5.27, в приведена транспортная развязка с двумя непрямыми (по петлям) левыми поворотами по направлениям AD и СА и двумя прямыми – по направлениям ВС и BD. Недостаток этой развязки в том, что потоки на прямых направлениях разветвляются и движутся по криволинейным траекториям. Пересечение имеет пять путепроводов, причем четыре из них – косые.

    Рис. 5. 27.

    а – расширенное распределительное кольцо с одним полупрямым левоповоротным съездом; б – грушевидный тип пересечения с двумя прямыми левоповоротными съездами; в – расширенный клеверный лист с двумя прямыми левыми поворотами

    При мощных четырех левоповоротных потоках используются схемы с прямыми левоповоротными съездами: ромбовидные пересечения и по типу криволинейного четырехугольника (рис. 5.28).

    На ромбовидном пересечении (рис. 5.28, а) каждый поворачивающий поток влево и вправо имеет свой съезд, поэтому отсутствует смешивание левоповоротных и правоповоротных потоков в пределах развязки. Все левоповоротные съезды прямые – поворот осуществляется непосредственно налево, скорости движения на всех съездах высокие, перепробеги отсутствуют. Развязка простая по конфигурации и легкая для ориентировки водителей. Недостаток: большое количество путепроводов – 9, из них 8 – косые.

    На схеме по типу криволинейного четырехугольника (рис. 5.28, 6) путепроводы устраиваются для каждого пересекаемого направления на основных дорогах и на левоповоротных съездах. Всего пересечение имеет 16 путепроводов, из них 12 – косые. У этого пересечения наибольшее количество путепроводов из всех возможных вариантов пересечений в двух уровнях. Развязка, как и предыдущая, простая по конфигурации. У нее прямые левоповоротные съезды, нигде не пересекающие правоповоротные направления.

    Рис. 5.28.

    а – ромбовидного типа; б – по типу криволинейного четырехугольника

    Пересечение типа крест с пятью путепроводами (рис. 5.29) применяют в стесненных условиях, например городской застройки, при пересечении равнозначных магистралей с мощными транспортными потоками. Кроме минимальной площади занимаемых земель такой тип пересечения характеризуется минимальными перепробегами для лево- и правоповоротного движения, однако требует сооружения пяти путепроводов (правда, меньшей ширины, чем для развязки типа клеверного листа) и исключает возможность разворота в пределах транспортного узла.

    Примыкания автомобильных дорог в разных уровнях разделяют на полные, обеспечивающие развязку движения по всем направлениям, и неполные, имеющие зоны пересечения транспортных потоков в одном уровне или зоны переплетения.

    В практике отечественного проектирования автомобильных дорог наибольшее распространение получили примыкания в разных уровнях по типу трубы (рис. 5.30).

    Рис. 5.29.

    Рис. 5.30.

    а с расположением левоповоротного съезда справа от путепровода; 6 – слева от путепровода

    Этот тип примыкания получен на основе использования элементов клеверного листа. Каждый поворачивающий поток имеет собственный съезд, но поскольку у левоповоротных потоков на большом протяжении общее земляное полотно с правоповоротными потоками, съезд на этом участке двухпутный с движением транспорта в противоположных направлениях.

    Условия движения левоповороных потоков на этой развязке различаются для потоков, идущих налево с основной дороги, и потоков с примыкающей дороги.

    В зависимости от размеров левоповоротного движения на основной дороге и примыкающей дороге левоповоротные съезды могут располагаться справа (рис. 5.30, а) или слева от путепровода (рис. 5.30, б).

    Если интенсивность левоповоротного движения с основной дороги на примыкающую больше, чем левоповоротного движения, идущего на основную дорогу, то следует принимать схему, показанную на рис. 5.30, а.

    Примыкание по типу трубы обеспечивает развязку движения во всех направлениях при отчуждении сравнительно небольшой площади земель и невысокой строительной стоимости.

    Листовидный тип примыкания (рис. 5.31) представляет собой половину клеверного листа. На этом примыкании, как и на примыкании по типу трубы, каждый поворачивающий поток имеет свой собственный съезд. Данный тип примыкания обеспечивает бо́льшую безопасность движения, чем примыкание по типу трубы, так как на всем протяжении левоповоротных съездов отсутствует встречное движение. По сравнению с примыканием по типу трубы эта развязка занимает бо́льшую площадь.

    На примыкании по типу половины неполного клеверного листа (рис. 5.32) каждый поворачивающий поток имеет свой собственный съезд, все потоки вливаются в проезжие части дорог с правой стороны. Левоповоротные потоки движутся путем поворота сначала налево, затем направо. Недостаток: имеется одна точка пересечения потоков в одном направлении.

    Рис. 5.32.

    а – при угле примыкания 90° (Т-образное примыкание); б

    Кольцевой тип примыкания получается на основе использования элементов распределительного кольца (рис. 5.33). Все съезды вливаются в кольцо и проезжую часть основной дороги с правой стороны, кольцо примыкает к правоповоротному съезду с левой стороны. На кольце левоповоротные потоки смешиваются между собой. Транспортная развязка имеет

    Рис. 5.31.

    а – при угле примыкания 90" (Т-образное примыкание); б – при остром угле примыкания (Х-образное примыкание)

    простую форму и является легкой для ориентации водителей. Примыкание имеет два путепровода.

    Рис. 5.33.

    а – при угле примыкания 90” (Т-образное примыкание); б – при остром угле примыкания (Х-образное примыкание)

    Примыкания с параллельным расположением право- и левоповоротных съездов проектируют по типу Т-образного примыкания или Х-образного криволинейного треугольника (рис. 5.34). Эти примыкания аналогичны ромбовидному типу пересечения (см. рис. 5.28). Левоповоротные потоки поворачивают непосредственно влево. На развязке отсутствует смешение лево- и правоповоротных потоков. Относительно удобства и безопасности движения эти развязки являются наилучшими из всех возможных. Транспортные развязки имеют по три косых путепровода.

    Рис. 5.34.

    а – по типу Т-образного треугольника; б – по типу Х-образного криволинейного треугольника

    • Гохман В.А. Пересечения и примыкания автомобильных дорог. М.: Высшая школа. 1989.

    Алматы - один из крупнейших мегаполисов Казахстана. Естественно, что он, как и другие крупные города развитых стран, сталкивается с необходимостью решать проблему дорожных развязок. Сегодня при проектировании автомобильных дорог предпочтение отдают современным технологиям и методам производства изысканий, основанным, прежде всего, на использовании высокопроизводительных методов сбора информации о местности: использованию ГИС - технологий при изысканиях автомобильных дорог и сооружений на них, методам наземной и аэрокосмической цифровой фотограмметрии, системам спутниковой навигации « GPS », методам электронной тахеометрии, наземного лазерного сканирования местности и геофизическим методам инженерно - геологических изысканий. Транспортная развязка -- комплекс дорожных сооружений (мостов, туннелей, дорог), предназначенный для минимизации пересечений транспортных потоков и, как следствие, для увеличения пропускной способности дорог. Преимущественно под транспортными развязками понимаются транспортные пересечения в разных уровнях, но термин используется и для специальных случаев транспортных пересечений в одном уровне. На сегодняшний день при строительстве используются новейшие современные технологии при строительстве автотранспортных развязок для улучшения качества и безопасности развязок.

    В нашем городе чаще используют такие приборы как Leica TC 407 производство Швейцария, а так же они выпускаю разные электронные рулетки и системы GPS.

    Так же при строительстве развязок используются новейшие программы ГИС, такие как Credo mix и AutoCAD. Эти программы специально предназначены для решения задач при строительстве разных видов и сложностей.

    Виды автомобильных развязок

    Транспортные развязки на пересечениях и примыканиях автомобильных дорог в разных уровнях являются сложнейшими узлами автомобильных дорог с точки зрения проектирования плана соединительных рамп, продольного и поперечных профилей, вертикальной планировки, организации поверхностного водоотвода. Развязки в разных уровнях, устраиваемые прежде всего на автомобильных дорогах высоких категорий, призваны для исключения пересечения транспортных потоков разных направлений в одном уровне с соответствующим увеличением пропускной способности дорог, скоростей движения, уровней удобства и безопасности движения. На примере сложной транспортной развязки, представленной на рисунке 1, показаны основные их элементы: пересекающиеся автомагистрали, лево-поворотные, правоповоротные съезды, директивные лево-поворотные съезды, путепроводы.

    Тип и принципиальные схемы транспортных развязок движения определяются множеством факторов: категориями пересекающихся дорог, перспективной интенсивностью транспортных потоков по направлениям; рельефом и ситуационными особенностями местности в районе пересечения или примыкания и т. д. Из всего многообразия разработанных схем транспортных развязок на пересечениях и примыканиях автомобильных дорог на рисунке 2 представлены некоторые из них, находящие применение в практике транспортного строительства.

    Рисунок 1. Схема сложной транспортной развязки в разных уровнях:

    1 - пересекающие автомагистрали; 2 - левоповоротные съезды;

    3 -правоповоротные съезды; 4 - директивные лево поворотные съезды; 5 - путепроводы

    Со стороны действующих строительных норм и правил проектирования к развязкам движения предъявляют следующие требования:

    Схемы развязки движения в разных уровнях на дорогах I - II категорий не должны допускать пересечений лево-поворотного движения с транспортными потоками основных направлений;

    Пересечения и примыкания на дорогах I - II категорий предусматривают не чаще, чем через 5 км, а на дорогах III категории - не чаще, чем через 2 км;

    Выезды с дорог I - III категорий и въезды на них осуществляют с устройством переходно-скоростных полос;

    Рисунок 2 - Схемы развязок движения на пересечениях и примыканиях автомобильных дорог разных уровнях:

    а- развязка «клеверный лист»; б, в, г, д - комбинированные клеверообразные развязки с директивными левоповоротными съездами; е - развязка «обжатый клеверный лист»; ж - развязка «обжатый не полный клеверный лист»; з - ромбовидное пересечение; и - Примыкающие с директивными левоповоротными съездами; л - Примыкающие по типу «трубы»; м - Примыкающие со смежными левоповоротными петлями

    На участках ответвлений и примыканий съездов развязок движения используют особые типы переходных кривых, характеризуемых параболическим либо S-образным законами изменения кривизны и наилучшим образом отвечающих условиям движения по ним автомобилей с переменными скоростями. Ширину проезжей части на всем протяжении левоповоротных съездов принимают равной 5,5 м, а на правоповоротных съездах - 5,0 м.

    Ширина обочин с внутренней стороны закруглений на съездах должна быть не менее 1,5 м, а с внешней стороны - 3,0 м. Продольные уклоны на съездах развязок движения в разных уровнях не должны быть более 40.

    Один из видов сложных транспортных развязок это клеверообразная. В конце 1960-х за рубежом клеверообразные накопительные развязки стали преобладать перед классическими клеверообразными. При такой конструкции развязки, съезды стали длиннее, соответственно увеличился радиус поворота, что позволяет повысить скорость передвижения по ней. В некоторых случаях для удлинения коротких петлевых съездов используют третий уровень развязки.

    Преимущества этой развязки в том что дешевая по сравнению с другими видами развязки и используется только 2 уровня для 2-х шоссе, выезд расположен перед въездом, количественно снижается необходимость перестроения потоков перед выездами с шоссе. Высокая пропускная способность развязки.

    Недостатки развязки в том что необходимо преобладание одного из потоков над другим. Если потоки сравниваются, то становится невозможным движение общественного транспорта через светофорную зону, при росте потока может закупориться и тоннель, необходимо большее расстояние перед следующим перекрёстком.

    Рисунок 3. Схема клеверообразной развязки

    Другая альтернатива четырехуровневой накопительной развязки - это турбинная развязка (также ее называют «Вирпул», в переводе - "завихрение"). Обычно, турбинной развязке требуется меньше (обычно два или три) уровня, съезды развязки по спирали сходятся к её центру. Особенностью развязки являются съезды с большим радиусом поворота, позволяющие повысить пропускную способность развязки в целом.

    Преимущества этой высокая пропускная способность и выезд расположен перед въездом, так же снижается необходимость перестроения потоков перед выездами с шоссе.

    Недостатки заключаются в том что требует много места для строительства, требует сооружения 11 мостов, резкие перепады высот на эстакадах съездов.

    Рисунок 4. Схема развязки

    Рисунок 5 - Развязка в натуре (аэрофотоснимок)

    Светофорная развязка образуется путём пересечения под произвольным углом (обычно прямым) двух и более дорог. Термин «развязка» употребляют только при сложном светофорном цикле, наличии других дорог для поворотного движения или запрете следования в одном из направлений.

    Преимущества:

    2. Возможность выделить отдельный цикл для пешеходов.

    Недостатки

    1. Проблема левого поворота при интенсивном движении на одной из дорог;

    2. При интенсивном движении время ожидания зелёного может достигать 10 минут;

    3. При большом трафике есть большой риск возникновения дорожных «пробок».

    Светофорная с карманом для разворота и левого поворота устраивается в случаях, когда на одной из улиц уже есть разделение потоков.

    Преимущества:

    1. Простота светофорных циклов;

    2. Используется имеющееся место на старом перекрёстке.

    Недостатки:

    1. Перегруз дороги, на которой устроены «карманы», может создать «пробки»;

    2. При левом повороте (а иногда и при развороте) необходимо стоять на минимум двух «красных» (для решения этой проблемы обычно разрешают правый поворот на красный);

    3. Ухудшается положение для пешеходов за счёт сокращения цикла или ликвидации фактически бессветофорного перехода. Такую развязку часто строят вместе с подземным переходом;

    4. Необходимо убирать помехи для видимости пешеходов, либо создаётся опасность правого поворота.

    Круговой перекрёсток в действии основан на том, что вместо перекрёстка строится круг, на который можно въезжать и съезжать в любом месте.

    Преимущества:

    1. Количество светофорных циклов снижается до минимальных двух (на пешеходный переход и проезд машин), иногда светофоры упраздняются вообще;

    2. Нет проблемы левого поворота (при правостороннем движении);

    3. Возможно ответвление и более четырёх дорог;

    Недостатки:

    1. Не может дать приоритет какой-либо (главной) дороге; применяется, как правило, на дорогах сходной загруженности;

    2. Высокая аварийная опасность;

    3. Необходимость чётко учитывать потоки пешеходов;

    4. Требуется много лишнего места;

    5. Пропускная способность ограничена длиной окружности;

    6. Не более 3 полос движения.

    Нетипичные решения. К-элемент. Одна из дорог обязательно состоит из трёх сегментов, два из которых представляют собой дороги для движения каждый в свою сторону, а третий -- выделенную полосу, при этом на перекрёстке центральная полоса «меняется» с одной боковой. Также есть частные случаи ухода выделенной полосы на второстепенную дорогу с выделением бульвара

    Преимущества:

    1. Выделенный цикл для ОТ совмещён с левым поворотом из двух полос;

    2. Левый поворот проходит с оттянутым разворотом далее через центральную полосу.

    Недостатки:

    Необходимо учитывать строение окрестных улиц.

    Виды развязок для пересечения шоссе и второстепенной дороги Parclo (Неполного развёртывания). Пример «полуромашки» или частичная клеверообразная.

    Преимущества:

    1. Больше скорость, чем на типичной клеверообразной за счёт более длинных полос;

    2. Дешевле за счёт строительства меньшей длины мостов;

    3. Задействованы все направления;

    4. Часто проектируется именно под преобладание левого поворота.

    Недостатки:

    1. Выделяется только часть полос для съезда/выезда. Выделить все полосы невозможно;

    2. Разворот с второстепенной дороги невозможен в принципе.

    Светофорно-туннельная. На главной дороге для движения прямо строится туннель (или эстакада), для остальных сохраняется светофорное движение

    Преимущества

    2. Практически нет препятствий для движения общественного транспорта;

    3. Зачастую можно сделать верхнюю зону преимущественно пешеходной;

    Недостатки:

    1. Необходимо преобладание одного из потоков над другим. Если потоки сравниваются, то становится невозможным движение общественного транспорта через светофорную зону, при росте потока может закупориться и тоннель;

    2. Необходимо большее расстояние перед следующим перекрёстком по сравнению со светофорной;

    Ромбовидная развязка с изменением сторонности. Ромбовидная развязка с изменением сторонности -- Diverging diamond interchange.

    Один из построенных вариантов в США.

    На главной дороге для движения прямо строится туннель (или эстакада), для второй сохраняется светофорное движение. Причем на второстепенной дороге меняется сторонность движения в пределах развязки.

    Преимущества:

    1. Позволяет выделить преобладающий поток без ущерба для второстепенной дороги;

    2. Две фазы для светофоров вместо трех в классической ромбовидной развязке;

    3. По сравнению с классическим вариантом робмовидной развязки большая пропускная способность;

    4. Увеличена безопасность движения за счет снижения скорости движения по второстепенной дороге и меньшему количеству конфликтных точек;

    5. Есть возможность разворота для главной дороги.

    Недостатки:

    1. Непривычная организация дорожного движения может сильно путать водителей. Необходима хорошо видная разметка.

    2. Не может работать без светофорного регулирования.

    Кольцевая с выделением прямого направления.

    Развязка отличается от кругового перекрестка тем, что прямое направление на главной дороге выделено с помощью туннеля или эстакады, для левых поворотов и разворотов используется кольцевое движение. Такие развязки часто строятся на основе круговых перекрестков выделением главной дороги -- такое решение часто применяют на площадях.

    По сравнению с обычной кольцевой такая развязка позволяет организовать бессветофорное движение на прямом направлении.

    На чтение 4 мин. Просмотров 3.3k. Опубликовано 25 июня, 2014

    Пробки – проклятие любого современного мегаполиса. Для того чтобы сэкономить жителям городов время и распределить потоки машин, инженеры-проектировщики прибегают порой к потрясающим решениям, о которых мы и расскажем в нашем материале.

    Развязка имени судьи Хэрри Преджерсона, Лос-Анджелес

    Одна из самых запутанных в мире дорожных конструкций, объединившая трассы для пассажирского транспорта, транзитную дорогу Harbor и железнодорожное полотно зеленой линии лос-анджелесского метрополитена, была открыта в 1993 году. Это хитрое сплетение дорог, расположенное на пересечении шоссе I-105, ведущего из Эль Сегундо в Норуолк, и I-110, следующего из Сан-Педро в Лос-Анджелес, неспроста носит имя федерального судьи Гарри Преджерсона. Подобно знаменитому законнику, сумевшему разобраться в дебрях судебного спора о возведении I-105, автомобильная развязка мастерски разруливает бесконечные потоки машин. Всего за один день этот лабиринт, позволяющий поворачивать в любом направлении на всех участках пути, пересекает более 500 тысяч автомобилей. Проблема лишь одна – стоит пропустить один, тот самый, нужный поворот, и чудо инженерной мысли превратится для вас в бесконечную ленту Мебиуса.

    Круговая велосипедная развязка, Эйндховен

    Государственная поддержка велосипедистов, развернутая на территории Голландии, привела к потрясающим результатам: в последние годы большая часть населения страны предпочитает использовать в быту экологичный и экономный двухколесный транспорт. Для удобства тех, кто предпочел отказаться от автомобилей, стала создаваться специальная инфраструктура – например, уникальная дорожная развязка The Honvering в Эйндховене. Этот круговой стальной мост, подвешенный над оживленным транспортным узлом, позволяет объезжать автомобильные дороги. Удивительная конструкция удерживается на центральном 70-метровом столбе при помощи металлических тросов, а для надежности укреплена еще и бетонными колоннами. Создатели The Hovering утверждают: будущее как раз за такими технологиями, сводящими на нет дорожно-транспортные происшествия и украшающими пейзажи необычным футуристическим дизайном.

    Развязка Грэйвелли-Хилл, Бирмингем

    Строительство запутанной, будто клубок ниток, дорожной развязки в Бирмингеме заняло четыре года. Много технологических проблем и инженерных загвоздок стояло на пути проектировщиков, вынужденных объединить в одну сеть две железнодорожных линии и 18 автомобильных маршрутов, от трассы государственного значения А38, ведущей из Корнуола в Нортхэмпшир, до узких проселочных дорог, не имеющих названия, и перекинуть все это через три канала и две реки. Для обеспечения лучшей пропускной способности и хорошей устойчивости строители были вынуждены заново уложить почти 22 километра дорожного покрытия и установить 59 колонн, разместив шоссе на пяти разновысотных уровнях. С легкой руки репортера местной газеты результат нелегких трудов, явившийся миру в мае 1972 года, получил шутливое прозвище «Развязка спагетти». Уж больно эта пугающая конструкция напоминает «смесь тарелки с макаронами и неудачной попытки завязать стаффордширский узел».

    Транспортная развязка на Таганской площади, Москва

    Даже те, кто знает «правила игры» и давно передвигается по таганским улочкам-переулочкам, нередко теряются на Садовом кольце. Что уж говорить про тех, кто впервые оказался на пересечении самых оживленных дорог Москвы, раскинувшихся в сердце Центрального округа столицы. Там, где Большой Краснохолмский мост соединяется с улицей Земляной вал, всегда царит хаос. Несколько автомобильных дорог, ведущих с Нижней и Верхней Радищевских, Гончарной, Марксистской, Воронцовской, Таганской, Народной улиц и насчитывающих по шесть и более полос, кишат бесконечными рядами автомобилей. Несмолкающий шум проезжающего транспорта прорезают резкие сигналы, а пробкам в часы пик не видно ни конца, ни края. Красочную картину одной из самых страшных дорожных развязок мира довершают две станции московского метро, автобусная остановка и практически полное отсутствие указателей.

    Развязка на площади Шарля де Голля, Париж

    Гениальные французские градостроители, подарившие Парижу площадь Звезды, наверняка не обладали даром предвидения. За прошедшие века «пятачок» возле прославленной Триумфальной арки, оживленный даже по меркам XIX века, превратился в настоящий ад для автомобилистов. Несмотря на то, что от центрального городского плаца, будто лучи звезды, расходятся в разные стороны 12 прямых и широких проспектов, и сходятся несколько линий метро, RER, автобусных маршрутов и автомобильных дорог, здесь нет ни светофоров, ни знаков приоритета. Немудрено, что даже парижские таксисты, проезжающие по округе по сто раз за день, грустно вздыхают, получив заказ на площадь Шарля де Голля. Ни интуиция, ни хорошее знание правил дорожного движения, ни многолетний водительский стаж не спасают от ужаса, творящегося тут в час пик: на развязке, попавшей в рейтинг самых сложных путей в мире, случается по несколько аварий в час.

    Поделиться